《认知机器人》(英文版) Incremental Path Planning

Incremental Path Planning Dynamic and Incremental a Prof brian Williams (help from Hsiang shu) 16.412/6.834 Cognitive Robotics February 17th, 2004
Incremental Path Planning Dynamic and Incremental A* Prof. Brian Williams (help from Ihsiang Shu) 16.412/6.834 Cognitive Robotics February 17th, 2004

Outline Review: Optimal path planning in Partially Known Environments a Continuous Optimal Path planning 口 Dynamic a iNcremental A* LRTA*)
Outline Review: Optimal Path Planning in Partially Known Environments. Continuous Optimal Path Planning Dynamic A* Incremental A* (LRTA*)

Zelinsky, 92 Generate global path plan from initial map 2. Repeat until goal reached or failure a EXecute next step in current global path plan a Update map based on sensors a If map changed generate new global path from map
[Zellinsky, 92] 1. Generate global path plan from initial map. 2. Repeat until goal reached or failure: Execute next step in current global path plan Update map based on sensors. If map changed generate new global path from map

Compute Optimal Path JEBs D H oGKF
Compute Optimal Path J M N O E I L G B D H K S A C F

Begin Executing Optimal Path h=4 h=3 h=2 h=1 h=3 h=2 h=1 h=0 E FI G h=4 h=2 h=1 B中D中H→K h=5 h=4 h=2 S"A甲CPF Robot moves along backpointers towards goal a Uses sensors to detect discrepancies along way
Begin Executing Optimal Path J M N O E I L G B D H K S A C F h = 5 h = 4 h = 3 h = 4 h = 4 h = 3 h = 2 h = 3 h = 3 h = 2 h = 1 h = 2 h = 2 h = 1 h = 0 h = 1 Robot moves along backpointers towards goal. Uses sensors to detect discrepancies along way

Obstacle encountered! h=4 h=3 h=1 h=1 h=3 h=2 h=1 h=0 E L中G h=4 h=2 h=1 B DH→K h=5 h=4 h=2 SA中C→F a At state A, robot discovers edge from d to h is blocked(cost 5,000 units) a Update map and reinvoke planner
Obstacle Encountered! J M N O E I L G B D H K S A C F h = 5 h = 4 h = 3 h = 4 h = 4 h = 3 h = 2 h = 3 h = 3 h = 2 h = 1 h = 1 h = 2 h = 1 h = 0 h = 1 At state A, robot discovers edge from D to H is blocked (cost 5,000 units). Update map and reinvoke planner

Continue path Execution h=4 h=3 h=1 h=1 h=3 h=2 h=1 h=0 E L中G h=4 h=2 h=1 B DH→K h=5 h=4h=3 h=2 SA中C→F As previous path is still optimal a Continue moving robot along back pointers
Continue Path Execution J M N O E I L G B D H K S A C F h = 5 h = 4 h = 3 h = 4 h = 4 h = 3 h = 2 h = 3 h = 3 h = 2 h = 1 h = 1 h = 2 h = 1 h = 0 h = 1 A’s previous path is still optimal. Continue moving robot along back pointers

Second Obstacle, replan! h=4 h=3 h=1 h=1 h=3 h=2 h=1 h=0 E L中G h=4 h=2 h=1 B DH→K h=5 h=4 h=2 SA甲C F a At c robot discovers blocked edges from c to f and h(cost 5,000 units a Update map and reinvoke planner
Second Obstacle, Replan! J M N O E I L G B D H K S A C F h = 5 h = 4 h = 3 h = 4 h = 4 h = 3 h = 2 h = 3 h = 3 h = 2 h = 1 h = 1 h = 2 h = 1 h = 0 h = 1 At C robot discovers blocked edges from C to F and H (cost 5,000 units). Update map and reinvoke planner

Path Execution Achieves goal h=4 h=3 h=1 h=1 MNO h=3 h=2 h=1 h=0 E中1→L中G h=4 h=2 h=1 B DH→K h=5 h=4 h=2 SA分CF Follow back pointers to goal a No further discrepancies detected goal achieved!
Path Execution Achieves Goal h = 5 J M N O E I L G B D H K S A C F h = 5 h = 4 h = 3 h = 4 h = 4 h = 3 h = 2 h = 3 h = 2 h = 1 h = 1 h = 2 h = 1 h = 0 h = 1 Follow back pointers to goal. No further discrepancies detected; goal achieved!

Outline Review: Optimal path planning in Partially Known Environments a Continuous Optimal Path Planning 口 DynamIC A iNcremental A* LRTA*)
Outline Review: Optimal Path Planning in Partially Known Environments. Continuous Optimal Path Planning Dynamic A* Incremental A* (LRTA*)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《认知机器人》(英文版) Path Planning in Partially-Known Environments.pdf
- 《认知机器人》(英文版) Course Objective 1.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 24 Multidisciplinary System.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 23 timdomainsim.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 21 robustdesign.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture23 computation.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 25 Fill in paper online course evaluations.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 18 Api7.pdf
- 麻省理工学院:《Multidisciplinary System》Peter A. Fenyes General Motors R and Planning.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 19 Kriging 16 April.pdf
- 麻省理工学院:《Multidisciplinary System》arametric Model Structure Representation.pdf
- 麻省理工学院:《Multidisciplinary System》Packaging.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 15 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 16 31 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 14 Lagrange Multipliers.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 17 Apri5.pdf
- 麻省理工学院:《Multidisciplinary System》Particle Swarm Optimization: Method and Applications.pdf
- 麻省理工学院:《Multidisciplinary System》Simulated Annealing A Basic Introduction.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 5 March.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 《认知机器人》(英文版) Probabilistic methods for Kinodynamic Path Planning.pdf
- 《认知机器人》(英文版) Robot Motion Planning and (a little)Computational Geometry.pdf
- 《认知机器人》(英文版) Foundations of State Estimation PartⅡ.pdf
- 《认知机器人》(英文版) Executing Model-based Programs Using.pdf
- 《认知机器人》(英文版) Temporal Planning in Space.pdf
- 《认知机器人》(英文版) Foundations of state Estimation.pdf
- 《认知机器人》(英文版) Fault Aware Systems: Model-based Programming and Diagnosis.pdf
- 《认知机器人》(英文版) Conflict-directed Diagnosis and Probabilistic Mode Estimation.pdf
- 《认知机器人》(英文版) Mapping Topics: Topological Maps.pdf
- 《认知机器人》(英文版) Optimal csPs and Conflict-directed.pdf
- 《认知机器人》(英文版) Model-based Programming and Constraint-based HMMs.pdf
- 《认知机器人》(英文版) Hybrid Mode Estimation and Gaussian Filtering with Hybrid HMMs.pdf
- 《认知机器人》(英文版) Using the Forest to See the Trees Context-based Object Recognition.pdf
- 《认知机器人》(英文版) Planning as Heuristic Forward Search.pdf
- 《认知机器人》(英文版) Fast Solutions to CSPs.pdf
- 《认知机器人》(英文版) LPG: Local search for Planning Graphs.pdf
- 《认知机器人》(英文版) Distributed constraint Satisfaction problems.pdf
- 《认知机器人》(英文版) Massachusetts Institute of Technology.pdf
- 《认知机器人》(英文版) Fast Solutions to CSp's.pdf
- 《认知机器人》(英文版) Reactive Planning in Large State Spaces Through.pdf