麻省理工学院:《Multidisciplinary System》Lecture23 computation

L23- Computational Issues Computer technologies have been changing the environment of engineering design -enabling MDO Hardware: Advances in processor speed, memory and storage Software: Powerful disciplinary analysis and simulation programs(e.g Nastran, Fluent.. This also creates new difficulties: Most activities involve stand-alone programs and many engineers spend 50-80% of their time organizing data and moving it back-and-forth between applications Data must be shared between disciplines more easily Computational requirements increase
L23 - Computational Issues • Computer technologies have been changing the environment of engineering design - enabling MDO • Hardware: Advances in processor speed, memory and storage • Software: Powerful disciplinary analysis and simulation programs (e.g. Nastran, Fluent …) • This also creates new difficulties: Most activities involve stand-alone programs and many engineers spend 50-80% of their time organizing data and moving it back-and-forth between applications Data must be shared between disciplines more easily Computational requirements increase

High Performance Computing MDO requires large computing power for realistic problems Computer power: clock speed, memory, of processor iBM 3090 and CRAY-1/2 used to be workhorses but now many engineering applications run on Windows/Linux PCs Many applications have benchmarks, e.g. Matlab"bench Various architectures are now in use for hPc (a Single mainframe supercomputer with batch execution (b)Parallel computing promising, but many obstacles c )Distributed PC workstations on common LAN Holy Grail: Teraflop performance( 1012 operation per sec Tradeoff between model fidelity and computational cost
High Performance Computing • MDO requires large computing power for realistic problems • Computer power: clock speed, memory, # of processor • IBM 3090 and CRAY-1/2 used to be workhorses, but now many engineering applications run on Windows/Linux PC’s • Many applications have benchmarks, e.g. Matlab “bench” • Various architectures are now in use for HPC: • (a ) Single mainframe supercomputer with batch execution • (b ) Parallel computing promising, but many obstacles • (c ) Distributed PC workstations on common LAN • Holy Grail: Teraflop performance (1012 operation per sec) • Tradeoff between model fidelity and computational cost

Runtime reduction strategies Model reduction Parallel computation Exploiting Sparsity and model Structure Going to compiled/lower level functions Using a more powerful processor
Runtime Reduction Strategies • Model Reduction • Parallel Computation • Exploiting Sparsity and Model Structure • Going to compiled/lower level functions • Using a more powerful processor

MATLAB Benchmark Computer performance typically assessed via benchmarks Execution time Relative Speed ODE LU Sparse 3-D 2-D This computer 0.380.220.330.821.16 DEC Alpha, 600 0.700.300430.940.73 Pentium INT. 400 0.760.460.441.611.19 Pentium l. Linux, '400 0.650.420.521.721.19 SGl Octane. 195 1.100.430.601.631.19 Pentium ll, Win98, 350 0.840.510.501.341.85 Sparc Ultra 2, 300 0.820.600.661.731.3 Pentium II Laptop, N, 266. 1.020.670.641.782.50 Pentium Pro, Linux, 2p0 1.210.831.052451.57 HP780.180 1.690.461.132.832.24 BMRS6000.167 1420.500.773.392.98 Sparc 10, Dual 160 2.121.071.294.503.08 sG|o2.180 2.521.731.603.992.62 Sparc 2(circa 1992) 10.0010.0010.0010.001000 01234567891011121314151617 Type: > bench at MATLAB command line
MATLAB Benchmark Computer performance typically assessed via benchmarks Execution time Relative Speed ODE LU Sparse 3-D 2-D This computer 0.38 0.22 0.33 0.82 1.16 DEC Alpha, 600 0.70 0.30 0.43 0.94 0.73 Pentium II, NT, 400 0.76 0.46 0.44 1.61 1.19 Pentium II, Linux, 400 0.65 0.42 0.52 1.72 1.19 SGI Octane, 195 1.10 0.43 0.60 1.63 1.19 Pentium II, Win98, 350 0.84 0.51 0.50 1.34 1.85 Sparc Ultra 2, 300 0.82 0.60 0.66 1.73 1.31 Pentium II Laptop, NT, 266 1.02 0.67 0.64 1.78 2.50 Pentium Pro, Linux, 200 1.21 0.83 1.05 2.45 1.57 HP 780, 180 1.69 0.46 1.13 2.83 2.24 IBM RS6000, 167 1.42 0.50 0.77 3.39 2.98 Sparc 10, Dual 160 2.12 1.07 1.29 4.50 3.08 SGI O2, 180 2.52 1.73 1.60 3.99 2.62 Sparc 2 (circa 1992) 10.00 10.00 10.00 10.00 10.00 0 1 2 3 4 5 6 7 8 9 10111213141516 17 Type: >> bench at MATLAB command line

Reference Stanford University Course Parallel methods in Numerical Analysis http://www.stanford.edu/class/cs238/ Prof juan alonso
Reference Stanford University Course “Parallel Methods in Numerical Analysis” http://www.stanford.edu/class/cs238/ Prof. Juan Alonso
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Multidisciplinary System》Lecture 25 Fill in paper online course evaluations.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 18 Api7.pdf
- 麻省理工学院:《Multidisciplinary System》Peter A. Fenyes General Motors R and Planning.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 19 Kriging 16 April.pdf
- 麻省理工学院:《Multidisciplinary System》arametric Model Structure Representation.pdf
- 麻省理工学院:《Multidisciplinary System》Packaging.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 15 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 16 31 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 14 Lagrange Multipliers.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 17 Apri5.pdf
- 麻省理工学院:《Multidisciplinary System》Particle Swarm Optimization: Method and Applications.pdf
- 麻省理工学院:《Multidisciplinary System》Simulated Annealing A Basic Introduction.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 5 March.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 1 1 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 11 March 8. 2004 olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 8 1 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 7 25 February.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 6 23 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 21 robustdesign.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 23 timdomainsim.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 24 Multidisciplinary System.pdf
- 《认知机器人》(英文版) Course Objective 1.pdf
- 《认知机器人》(英文版) Path Planning in Partially-Known Environments.pdf
- 《认知机器人》(英文版) Incremental Path Planning.pdf
- 《认知机器人》(英文版) Probabilistic methods for Kinodynamic Path Planning.pdf
- 《认知机器人》(英文版) Robot Motion Planning and (a little)Computational Geometry.pdf
- 《认知机器人》(英文版) Foundations of State Estimation PartⅡ.pdf
- 《认知机器人》(英文版) Executing Model-based Programs Using.pdf
- 《认知机器人》(英文版) Temporal Planning in Space.pdf
- 《认知机器人》(英文版) Foundations of state Estimation.pdf
- 《认知机器人》(英文版) Fault Aware Systems: Model-based Programming and Diagnosis.pdf
- 《认知机器人》(英文版) Conflict-directed Diagnosis and Probabilistic Mode Estimation.pdf
- 《认知机器人》(英文版) Mapping Topics: Topological Maps.pdf
- 《认知机器人》(英文版) Optimal csPs and Conflict-directed.pdf
- 《认知机器人》(英文版) Model-based Programming and Constraint-based HMMs.pdf
- 《认知机器人》(英文版) Hybrid Mode Estimation and Gaussian Filtering with Hybrid HMMs.pdf
- 《认知机器人》(英文版) Using the Forest to See the Trees Context-based Object Recognition.pdf
- 《认知机器人》(英文版) Planning as Heuristic Forward Search.pdf