麻省理工学院:《Multidisciplinary System》Lecture 18 Api7

Mest 16888 ES077 Multidisciplinary System Design Optimization(MSDO) Structural Optimization Design Space Optimization Lecture 18 Apr7,2004 Yong Kim C Massachusetts Institute of Technology-Dr ll Yong Kim
1 © Massachusetts Institute of Technology – Dr. Il Yong Kim Multidisciplinary System Design Optimization (MSDO) Structural Optimization & Design Space Optimization Lecture 18 April 7, 2004 Il Yong Kim

16888 ESD.J7 I. Structural Optimization Integrated Structural optimization I. Design Space Optimization o Massachusetts Institute of Technology-Dr Il Yong Kim
2 © Massachusetts Institute of Technology – Dr. Il Yong Kim I. Structural Optimization II. Integrated Structural Optimization III. Design Space Optimization

Mlesd Structural optimization 16888 E77 Definition An automated synthesis of a mechanical component based on structural properties. A method that automatically generates a mechanical component design that exhibits optimal structural performance o Massachusetts Institute of Technology-Dr Il Yong Kim
3 © Massachusetts Institute of Technology – Dr. Il Yong Kim Structural Optimization * Definition - An automated synthesis of a mechanical component based on structural properties. - A method that automatically generates a mechanical component design that exhibits optimal structural performance

Mles 16888 od Structural Optimization ESD.J7 minimize f(x) subject to g(x)≤0 X X∈S Typically, FEM is used BC's are given Loads are given How to represent the structure? or Which ty pe of design variables to use? min compliance (1)Size Optimization s.t. m smc (2 Shape Optimization 3)Topology Optimization o Massachusetts Institute of Technology-Dr Il Yong Kim
4 © Massachusetts Institute of Technology – Dr. Il Yong Kim Structural Optimization minimize ( ) subject to ( ) 0 () 0 f g h S d x x x x BC’s are given Loads are given How to represent the structure? or Which type of design variables to use? Typically, FEM is used. (1) Size Optimization (2) Shape Optimization (3) Topology Optimization min compliance s.t. m dmC ?

Mlesd Size optimization example 16888 E77 Beams (2-Dim minimize f(x) subject g(x)≤0 h(x)=0 X∈ Design variables(x) fx): compliance x: thickness of each beam g(x): mass h(x): state equation Number of design variables(ndv) ndv= 5 o Massachusetts Institute of Technology-Dr Il Yong Kim
5 © Massachusetts Institute of Technology – Dr. Il Yong Kim Size Optimization Example f(x) : compliance g(x) : mass h(x) : state equation • Design variables (x) x : thickness of each beam • Number of design variables (ndv) ndv = 5 Beams (2-Dim) minimize ( ) subject to ( ) 0 () 0 f g h S d x x x x

Mlesd Shape Optimization Example 16888 E77 B-spline(2-Dim) minimize f(x) subject g(x)≤0 h(x)=0 X∈ Design variables(x) fx): compliance x: control points of the B-spline g(x): mass (position of control points h(x): state equation Number of design variables (ndv ndy 8 o Massachusetts Institute of Technology-Dr Il Yong Kim
6 © Massachusetts Institute of Technology – Dr. Il Yong Kim Shape Optimization Example • Design variables (x) x : control points of the B-spline (position of control points) • Number of design variables (ndv) ndv = 8 B-spline (2-Dim) minimize ( ) subject to ( ) 0 () 0 f g h S d x x x x f(x) : compliance g(x) : mass h(x) : state equation

Mlesd Topology Optimization Example Eo. Cells(2-Dim) minimize f(x) subject g(x)≤0 h(x)=0 X∈ Domain shape is determined at the beginning Design variables(x) fx): compliance x: density of each cel■ g(x): mass (0≤p≤1) h(x): state equation Number of design variables(ndv) ndv= 27 o Massachusetts Institute of Technology-Dr Il Yong Kim
7 © Massachusetts Institute of Technology – Dr. Il Yong Kim Topology Optimization Example • Design variables (x) x : density of each cell (0 d U d 1) • Number of design variables (ndv) ndv = 27 Cells (2-Dim) Domain shape is determined at the beginning minimize ( ) subject to ( ) 0 () 0 f g h S d x x x x f(x) : compliance g(x) : mass h(x) : state equation

Mest 16888 Structural Optimization ES077 Size optimization Shape optimization Topology optimization Shape -Topology is given Topology are given Optimize boundary shape Optimize cross sections Optimize topology o Massachusetts Institute of Technology-Dr Il Yong Kim
8 © Massachusetts Institute of Technology – Dr. Il Yong Kim Structural Optimization Size optimization Shape optimization Topology optimization - Topology is given - Optimize boundary shape - Shape Topology - Optimize cross sections are given - Optimize topology

Mest 16888 Size Optimization ES077 Simplest method Changes dimension of the component and cross sections Applied to the design of truss structures Schmit(1960) General approach to structural optimization Coupling FEA&NL math Programming A Changed Length of the members Thickness of the members Unchanged Layout of the structure Ndv:10~100 o Massachusetts Institute of Technology-Dr Il Yong Kim
9 © Massachusetts Institute of Technology – Dr. Il Yong Kim Size Optimization Schmit (1960) - General approach to structural optimization - Coupling FEA & NL math. Programming - Simplest method - Changes dimension of the component and cross sections - Applied to the design of truss structures - Length of the members - Thickness of the members - Layout of the structure * Unchanged * Changed Ndv: 10~100

Mest 16888 Shape Optimization ESD.J7 Design variables control the shape Size optimization is a special case of shape optimization Various approaches to represent the shape Zolesio(1981), Haug and Choi et al. (1986)-Univ of lowa A general method of shape sensitivity analysis using the material derivative method adjoint variable method Radius of a circl Ellipsoid Bezier curve Etc Nodal positions Basis function when the fem is use0)∑a(xy) (control points Ndv:10~100 o Massachusetts Institute of Technology-Dr Il Yong Kim
10 © Massachusetts Institute of Technology – Dr. Il Yong Kim Shape Optimization Zolesio (1981), Haug and Choi et al. (1986) – Univ. of Iowa - A general method of shape sensitivity analysis using the material derivative method & adjoint variable method - Design variables control the shape - Size optimization is a special case of shape optimization - Various approaches to represent the shape Nodal positions (when the FEM is used) Basis functions B-spline (control points) Radius of a circle Ellipsoid Bezier curve Etc… Ndv: 10~100 1 (, ,) n i i i D I xyz ¦
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Multidisciplinary System》Peter A. Fenyes General Motors R and Planning.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 19 Kriging 16 April.pdf
- 麻省理工学院:《Multidisciplinary System》arametric Model Structure Representation.pdf
- 麻省理工学院:《Multidisciplinary System》Packaging.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 15 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 16 31 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 14 Lagrange Multipliers.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 17 Apri5.pdf
- 麻省理工学院:《Multidisciplinary System》Particle Swarm Optimization: Method and Applications.pdf
- 麻省理工学院:《Multidisciplinary System》Simulated Annealing A Basic Introduction.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 5 March.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 1 1 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 11 March 8. 2004 olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 8 1 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 7 25 February.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 6 23 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 5 18 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 2 9 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 25 Fill in paper online course evaluations.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture23 computation.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 21 robustdesign.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 23 timdomainsim.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 24 Multidisciplinary System.pdf
- 《认知机器人》(英文版) Course Objective 1.pdf
- 《认知机器人》(英文版) Path Planning in Partially-Known Environments.pdf
- 《认知机器人》(英文版) Incremental Path Planning.pdf
- 《认知机器人》(英文版) Probabilistic methods for Kinodynamic Path Planning.pdf
- 《认知机器人》(英文版) Robot Motion Planning and (a little)Computational Geometry.pdf
- 《认知机器人》(英文版) Foundations of State Estimation PartⅡ.pdf
- 《认知机器人》(英文版) Executing Model-based Programs Using.pdf
- 《认知机器人》(英文版) Temporal Planning in Space.pdf
- 《认知机器人》(英文版) Foundations of state Estimation.pdf
- 《认知机器人》(英文版) Fault Aware Systems: Model-based Programming and Diagnosis.pdf
- 《认知机器人》(英文版) Conflict-directed Diagnosis and Probabilistic Mode Estimation.pdf
- 《认知机器人》(英文版) Mapping Topics: Topological Maps.pdf
- 《认知机器人》(英文版) Optimal csPs and Conflict-directed.pdf
- 《认知机器人》(英文版) Model-based Programming and Constraint-based HMMs.pdf
- 《认知机器人》(英文版) Hybrid Mode Estimation and Gaussian Filtering with Hybrid HMMs.pdf