麻省理工学院:《Multidisciplinary System》Lecture 17 Apri5

M 16888 S077 Multidisciplinary System Design Optimization(MSDO) Multiobjective Optimization () ecture 17 Apri5,2004 Prof. olivier de Weck o Massachusetts Institute of Technology -Prof. de Weck and Prof Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
1 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Multidisciplinary System Multidisciplinary System Design Optimization (MSDO) Design Optimization (MSDO) Multiobjective Optimization (II) Lecture 17 April 5, 2004 by Prof. Olivier de Weck

M Moo 2 Lecture Outline 16888 E5077 Lecture 2(today) Alternatives to Weighted Sum(WS) Approach Multiobjective Heuristic Programming Utility function Optimization Physical Programming(Prof Messac Application to Space System Optimization Lab preview Friday 4-9-2003- Section 1) o Massachusetts Institute of Technology -Prof de Weck and Prof. Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
2 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics MOO 2 Lecture Outline MOO 2 Lecture Outline Lecture 2 (today) • Alternatives to Weighted Sum (WS) Approach • Multiobjective Heuristic Programming • Utility Function Optimization • Physical Programming (Prof. Messac) • Application to Space System Optimization • Lab Preview (Friday 4-9-2003 – Section 1)

Mlesd Weighted Sum(WS)Approach 50.1 Min J2) MO ∑ miss this i =1 S concave region convert back to sop LP in J-space easy to implement > Pareto scaling important front weighting determines 0 Which point along pf is J-hyperplane utopia found misses concave PF Max(J1) o Massachusetts Institute of Technology -Prof. de Weck and Prof Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
3 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Weighted Sum (WS) Approach Weighted Sum (WS) Approach 1 z i MO i i i w J J = sf = ¦ utopia Max( J 1 ) Min( J 2 ) miss this concave region Pareto front • convert back to SOP • LP in J-space • easy to implement • scaling important ! • weighting determines which point along PF is found • misses concave PF w 2>w1 w1>w 2 J-hyperplane J*i J*i+1

MIlesd Weighted Square Sum Approach齡别 J=w1J12+w2 Obj Fun. Line Ref: messac J2 o Massachusetts Institute of Technology -Prof. de Weck and Prof Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
4 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Weighted Square Sum Approach Weighted Square Sum Approach 2 2 11 2 2 J = + wJ wJ Obj. Fun. Line J1 J2 Ref: Messac

MIlesd Compromise Programming(CP)E5., J=W,,twJ Obj. Fun. Line This allows “ access" to the non-convex part of the pAreto front 3 5 6 55 Obiective 1 o Massachusetts istitute of Technology -Prof de Weck and Prof. Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
5 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Compromise Programming (CP) Compromise Programming (CP) Obj. Fun. Line 11 2 2 n n J wJ wJ = + 55 This allows “access” to the non-convex part of the Pareto front

M d Multiobjective Heuristics 16888 E5077 Pareto Fitness- Ranking Recall: Multiobjective GA This number comes from the d-matrix Pareto ranking scheme Allows ranking of population 0 without assigning preferences …… or weights to individual 十 objectives :1:…+ Successive ranking and removal scheme i÷-.· Deciding on fitness of dominated solutions is more difficult Pareto ranking for a minimization problem e of Technology -Prof. de Weck and Prof Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
6 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Multiobjective Heuristics Multiobjective Heuristics • Pareto ranking scheme • Allows ranking of population without assigning preferences or weights to individual objectives • Successive ranking and removal scheme • Deciding on fitness of dominated solutions is more difficult. Pareto ranking for a minimization problem. Pareto Fitness - Ranking Recall: Multiobjective GA This number comes from the D-matrix

Mlesd Example Multiobjective GA 16888 E5077 Minimization Objective 1 f(x,x)=1-p∑x n x p ex x+ Objective 2 No mating Generaton 100 restrictions With mating restrictions nates individuals Nondominated individuals O Dominated ind ividuals -Best Radle eff found (cunt Best trade off found (cumulative) Artial Pareto set o Massachusetts Institute of Technology -Prof. de Weck and Prof Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
7 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Example Multiobjective GA Example Multiobjective GA ( ) 2 1 1 1 1 ,..., 1 exp n n i i fx x x = n ª º § · =− − − « » ¨ ¸ « » © ¹ ¬ ¼ ¦ Minimization Objective 1 Objective 2 ( ) 2 1 1 1 1 ,..., 1 exp n n i i fx x x = n ª º § · =− − + « » ¨ ¸ « » © ¹ ¬ ¼ ¦ No mating restrictions With mating restrictions

M esd Double Peaks Example: MO-GA ES 77 Multiobjective Genetic algorithm Generation 1 Generation 10 o Massachusetts Institute of Technology -Prof de Weck and Prof. Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
8 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Double Peaks Example: MO Double Peaks Example: MO -GA Multiobjective Genetic Algorithm Generation 1 Generation 10

Mlesd Utility Function Approach 16888 S077 Decision maker has utility function U: R2>R This function might or might not be known mathematically U maps objective vector to the real line MOP:max{(小)J=Cx,x∈S} MNP:ma(y(0)J=(x,x∈S Example 0,0 maxJ=x,+x21 (0,4) maX V2=x s. x3=(3, U=18 4x,+3x,<12 S 、U=24 x,x1≥0 Where U=2J, 12 o Massachusetts Institute of Technology -Prof de Weck and Prof. Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
9 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Utility Function Approach Utility Function Approach Decision maker has utility function This function might or might not be known mathematically U maps objective vector to the real line : z U \ \ → MOLP: MONLP: max , {U S ( ) J J Cx x = ∈ } max , {UfS () () JJ x x = ∈ } (0,0) (0,4) (3,0) = = = 1 2 3 x x x { } { } 112 2 1 1 2 1 2 1 2 max max s.t. 4x 3 12 , 0 where 2 J x x J x x x x U JJ = + = + ≤ ≥ = x 1 x 2 c1 x 2 c 2 x 3 x1 S U=24 U=18 Example:

Mlesd Utility Function Shapes 16888 E5077 Monotonic Strictly Concave Increasing Concave Convex Non-monotonic decreasing Convex Cook Smaller-is-better(SIB) Nominal-is Range Larger-is-better(LIB) -better(NIB) -is-better(RIB Messac. Class 1S Class 3s Class 4S Class 2S o Massachusetts Institute of Technology -Prof de Weck and Prof. Willcox Engineering Systems Division and Dept of Aeronautics and Astronautics
10 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics Utility Function Shapes Utility Function Shapes Ji Ui Ji Ui Ui Ji Ui Monotonic Ji increasing decreasing Strictly Concave Convex Concave Convex Non-monotonic Cook: Smaller-is-better (SIB) Larger-is-better (LIB) Nominal-is -better (NIB) Range -is-better (RIB) - Messac: Class 1S Class 2S Class 3S Class 4S
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《Multidisciplinary System》Particle Swarm Optimization: Method and Applications.pdf
- 麻省理工学院:《Multidisciplinary System》Simulated Annealing A Basic Introduction.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 5 March.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 1 1 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 11 March 8. 2004 olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 8 1 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 7 25 February.pdf
- 麻省理工学院:《Multidisciplinary System》Issues in Optimization.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 6 23 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 5 18 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 2 9 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 4 17 February.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 3: Modeling and Simulation.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 1 4 February 2004.pdf
- 《飞行器系统工程》(英文版) Payload, Range and Speed.pdf
- 《飞行器系统工程》(英文版) Today' s class.pdf
- 《飞行器系统工程》(英文版) AARON COHEN.pdf
- 《飞行器系统工程》(英文版) Brian Kelly Bio.pdf
- 《飞行器系统工程》(英文版) LECTURE OUTLINE.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 14 Lagrange Multipliers.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 16 31 March.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 15 Olivier de Weck.pdf
- 麻省理工学院:《Multidisciplinary System》Packaging.pdf
- 麻省理工学院:《Multidisciplinary System》arametric Model Structure Representation.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 19 Kriging 16 April.pdf
- 麻省理工学院:《Multidisciplinary System》Peter A. Fenyes General Motors R and Planning.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 18 Api7.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 25 Fill in paper online course evaluations.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture23 computation.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 21 robustdesign.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 23 timdomainsim.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 24 Multidisciplinary System.pdf
- 《认知机器人》(英文版) Course Objective 1.pdf
- 《认知机器人》(英文版) Path Planning in Partially-Known Environments.pdf
- 《认知机器人》(英文版) Incremental Path Planning.pdf
- 《认知机器人》(英文版) Probabilistic methods for Kinodynamic Path Planning.pdf
- 《认知机器人》(英文版) Robot Motion Planning and (a little)Computational Geometry.pdf
- 《认知机器人》(英文版) Foundations of State Estimation PartⅡ.pdf
- 《认知机器人》(英文版) Executing Model-based Programs Using.pdf