《认知机器人》(英文版) Fast Solutions to CSPs

Fast Solutions to csps Presented by: Robert Effinger Dan lovell Presented To: 16.412J Cognitive Robotics MIT References: Dynamic Backtracking Matthew L. Ginsberg, CIRL, University of Oregon Journal of Artificial Intelligence Research 1(1993) p.2546 Hybrid algorithms for the constraint satisfaction problem Prosser, P. Computational Intelligence 9 (1993 ) 268-299 Apr5,2004
Fast Solutions to CSPs Presented by: Robert Effinger Dan Lovell Presented To: 16.412J Cognitive Robotics MIT References: “Dynamic Backtracking” Matthew L. Ginsberg, CIRL, University of Oregon Journal of Artificial Intelligence Research 1 (1993) p. 25-46 “Hybrid algorithms for the constraint satisfaction problem” Prosser, P. Computational Intelligence 9 (1993), 268-299. April 5, 2004

Motivation Mobile robot planning Resource scheduling laying out a silicon chip · interpret aⅦ sual image manutacturing processes design of airline timetable ° radio frequency planning
Motivation • Mobile robot planning • Resource scheduling • laying out a silicon chip • interpret a visual image • manufacturing processes • design of airline timetable • radio frequency planning

Quick definition of a csP Constraint Satisfaction Problem(L,V, C) I a set of variables Vi, a set of possible values for each variable in I C, a set of Ci] constraints, each a binary relation C={Cl,1….C,nC2,1..C2,n…,Cn,n a Solution is found when each variable i is assigned a value from it' s domain vi and the set of all Constraints {C} is satisfied
Quick Definition of a CSP Constraint Satisfaction Problem ( I,V,C ) - I , a set of variables , a set of variables - Vi, a set of possible values for each variable in a set of possible values for each variable in I. - C, a set of , a set of Cij constraints, each a binary relation constraints, each a binary relation C = {C1,1 … C1,n C2,1 … C2,n … Cn,n} A Solution is found when each variable I is assigned a value from it’s domain Vi and the set of all Constraints {C} is satisfied

How our two talks fit together Six base styles of csp search go Backwards(Bobby) More Chronological Dynamic informed Backjumping Conflict-Directed Backtracking Backup 吗 Styles (1970s) (80s and 90s) ,■■■■口■■■■ Backmarking Go Hybrid onwards 80s and 90's ): algorithms Dan) (an Forward Checking Generally Faster Different styles
Go Backwards Go Forwards Chronological Backtracking Backmarking Forward Checking Backjumping Conflict-Directed Backjumping More informed Styles Different styles Six base styles of CSP search Hybrid Algorithms Generally Faster How our two talks fit together Dynamic Backtracking (Bobby) (Dan) (Dan) (1970’s) (80’s and 90’s) (80’s and 90’s)

Dynamic Backtracking and a review of: Chronological Backtracking and Conflict-Directed Backjumping Advanced Lecture Topic: Fast Solutions to CSPs Presented by: Robert Effinger Presented To: 16.412J Cognitive robotics MIT Reference Dynamic backtracking Matthew L. Ginsberg, CIRL, University of Oregon Journal of artificial Intelligence Research 1 (1993) p.25-46 Apm5,2004
Dynamic Backtracking and a review of: Chronological Backtracking and Conflict-Directed Backjumping Presented by: Robert Effinger Presented To: 16.412J Cognitive Robotics MIT Reference: “Dynamic Backtracking” Matthew L. Ginsberg, CIRL, University of Oregon Journal of Artificial Intelligence Research 1 (1993) p. 25-46 April 5, 2004 Advanced Lecture Topic: Fast Solutions to CSPs

Overview Definition of a csp Simple Map Coloring EXample Representing a CSP as a Search Tree Introduce the Example Problem Compare Three Backtracking Algorithms Chronological Backtracking Conflict-Directed Backjumping Dynamic Backtracking Summary ot Dynamic Backtracking Pros and cons Apm5,2004
Overview • Definition of a CSP • Simple Map Coloring Example – Representing a CSP as a Search Tree – Introduce the Example Problem • Compare Three Backtracking Algorithms – Chronological Backtracking – Conflict-Directed Backjumping – Dynamic Backtracking • Summary of Dynamic Backtracking – Pros and Cons April 5, 2004

Quick definition of a csP Constraint Satisfaction Problem(I,V,C) I a set of variables Vi, a set of possible values for each variable in C, a set of Ci] constraints, each a binary relation C={Cl,1….C,nC2,1..C2,n…,Cn,n a Solution is found when each variable i is assigned a value from it,'s domain Vi and the set of all Constraints C) is satisfied D C I=A, B,C D,E A B Vi=red, yellow, blue) Cij=(no neighbor can be the same color E
Quick Definition of a CSP Constraint Satisfaction Problem ( I,V,C ) - I , a set of variables , a set of variables - Vi, a set of possible values for each variable in a set of possible values for each variable in I. - C, a set of , a set of Cij constraints, each a binary relation constraints, each a binary relation C = {C1,1 … C1,n C2,1 … C2,n … Cn,n} A Solution is found when each variable I is assigned a value from it’s domain Vi and the set of all Constraints {C} is satisfied. I = {A,B,C,D,E} Vi = {red,yellow,blue} Cij = (no neighbor can be the same color)

Simple Example Problem
Simple Example Problem

Search Tree Representation of a cSP Simple Map Coloring Example Variables are assigned values according to an instantiation order The search tree grows downward as A B until each variable is assigned a value from it's domain Dynamic Backtracking allows a E dynamic instantiation order Instantiation Search tree Order 000 A 2)⊙oB 3)°oC→·8·60060·6060606 4)⊙06D 4。。 5)oeE-●O
Search Tree Representation of a CSP A B C D E Instantiation Order • Variables are assigned values according to an instantiation order • The search tree grows downward as until each variable is assigned a value from it’s domain. • Dynamic Backtracking allows a dynamic instantiation order 1.) 2.) 3.) 4.) 5.) Search Tree Simple Map Coloring Example

Changing the Color Ordering to Create an Interesting example problem Pushes the first feasible solution further into the search tree A B Still covers all possible permutations of value assignments to variables · Still a valid csp E Search tree Instantiation Order OO A ○eB 3)·°C→●·●0●90·0··●0···0●·0 6朵。。 .eo 's E AAAA
Changing the Color Ordering to Create an Interesting Example Problem A B C D E • Pushes the first feasible solution further into the search tree • Still covers all possible permutations of value assignments to variables • Still a valid CSP Search Tree Instantiation Order 1.) 2.) 3.) 4.) 5.)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《认知机器人》(英文版) Planning as Heuristic Forward Search.pdf
- 《认知机器人》(英文版) Using the Forest to See the Trees Context-based Object Recognition.pdf
- 《认知机器人》(英文版) Hybrid Mode Estimation and Gaussian Filtering with Hybrid HMMs.pdf
- 《认知机器人》(英文版) Model-based Programming and Constraint-based HMMs.pdf
- 《认知机器人》(英文版) Optimal csPs and Conflict-directed.pdf
- 《认知机器人》(英文版) Mapping Topics: Topological Maps.pdf
- 《认知机器人》(英文版) Conflict-directed Diagnosis and Probabilistic Mode Estimation.pdf
- 《认知机器人》(英文版) Fault Aware Systems: Model-based Programming and Diagnosis.pdf
- 《认知机器人》(英文版) Foundations of state Estimation.pdf
- 《认知机器人》(英文版) Temporal Planning in Space.pdf
- 《认知机器人》(英文版) Executing Model-based Programs Using.pdf
- 《认知机器人》(英文版) Foundations of State Estimation PartⅡ.pdf
- 《认知机器人》(英文版) Robot Motion Planning and (a little)Computational Geometry.pdf
- 《认知机器人》(英文版) Probabilistic methods for Kinodynamic Path Planning.pdf
- 《认知机器人》(英文版) Incremental Path Planning.pdf
- 《认知机器人》(英文版) Path Planning in Partially-Known Environments.pdf
- 《认知机器人》(英文版) Course Objective 1.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 24 Multidisciplinary System.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 23 timdomainsim.pdf
- 麻省理工学院:《Multidisciplinary System》Lecture 21 robustdesign.pdf
- 《认知机器人》(英文版) LPG: Local search for Planning Graphs.pdf
- 《认知机器人》(英文版) Distributed constraint Satisfaction problems.pdf
- 《认知机器人》(英文版) Massachusetts Institute of Technology.pdf
- 《认知机器人》(英文版) Fast Solutions to CSp's.pdf
- 《认知机器人》(英文版) Reactive Planning in Large State Spaces Through.pdf
- 《认知机器人》(英文版) Partially Observable Markov Decision Processes.pdf
- 《认知机器人》(英文版) Vision-based SLAM.pdf
- 《认知机器人》(英文版) SIFT SLAM Vision Details.pdf
- 《认知机器人》(英文版) Information Based Adaptive Robotic Exploration.pdf
- 《认知机器人》(英文版) Temporal Plan Execution: Dynamic Scheduling and Simple Temporal Networks.pdf
- 《认知机器人》(英文版) Partially Observable Markov Decision Processes Part II.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 1:Bode plot rules reminder.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 2:Gain and Phase margins.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 5:Control System Design Principles.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 6:Proportional Compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 3:Gain and Phase Margins for unstable.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 4:Root-Locus Review.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)extra.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 7:Lag and PI compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 8:Lead compensation.pdf