《认知机器人》(英文版) Vision-based SLAM

Vision-based sLAM Mobile robot Localization And Mapping With Uncertainty using Scale-Invariant Visual Landmarks Se, Lowe, Little Vikash Mansinghka Soren Riisgaard Outline Soren SLAM SLAM introduction SIFT SLAM Experimental Results Vikash SIFT matching
Outline • • Søren: SLAM – SLAM introduction – SIFT SLAM – Experimental Results Vikash: SIFT matching Vision-based SLAM Mobile Robot Localization And Mapping With Uncertainty using Scale-Invariant Visual Landmarks - Se, Lowe, Little Vikash Mansinghka & Søren Riisgaard

Simultaneous Localization And Mapping The SLAM problem · Preconditions Enough landmarks Static landmarks ANT ☆ ☆ State Est, VS SLAM State estimation EKF HMM- Viterbi HMM- Particle filters SLAM Map and robot pose is coupled Errors are correlated
• • • – – ? • Simultaneous Localization And Mapping The SLAM problem Preconditions Enough landmarks Static landmarks State Est. vs SLAM State Estimation – EKF – HMM – Viterbi – HMM – Particle filters • SLAM – Map and robot pose is coupled – Errors are correlated

3 SLAM Algorithms ekF based slam · FastsLaM ·S| FT SLAM Comparison FastsLAM SIFT SLAM Robot pose Particle Filter Least Squares EKF Landmarks Combined with pose 1 Kalman Filter per 1 Kalman Filter per O(MK/o(M log K) Applications Small scenarios Large Scenarios Vision Observation Landmarks Landmarks Robot pose K= Landmarks. M= Particles SIFT SLAM Where did I try to go? Stimate Odometry based state Least squares localization estimate Where did i go · Localization-EKF Where did I really go? Mapping Update landmark cov, add new landmarks
3 SLAM Algorithms • EKF based SLAM • FastSLAM • SIFT SLAM • Comparison EKF FastSLAM SIFT SLAM Robot Pose EKF Particle Filter Least Squares EKF Landmarks Combined with pose 1 Kalman Filter per Landmark/sample 1 Kalman Filter per Landmark Performance O(K2) O(M K) / O(M log K) O(K) ? Applications Small scenarios Large Scenarios Vision Observation Landmarks Landmarks Robot pose K = Landmarks, M = Particles SIFT SLAM • – • – • – • – l Odometry based state estimate Where did I try to go? Least Squares localization estimate Where did I go? Localization – EKF Where did I really go? Mapping Update andmark cov, add new landmarks
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《认知机器人》(英文版) Partially Observable Markov Decision Processes.pdf
- 《认知机器人》(英文版) Reactive Planning in Large State Spaces Through.pdf
- 《认知机器人》(英文版) Fast Solutions to CSp's.pdf
- 《认知机器人》(英文版) Massachusetts Institute of Technology.pdf
- 《认知机器人》(英文版) Distributed constraint Satisfaction problems.pdf
- 《认知机器人》(英文版) LPG: Local search for Planning Graphs.pdf
- 《认知机器人》(英文版) Fast Solutions to CSPs.pdf
- 《认知机器人》(英文版) Planning as Heuristic Forward Search.pdf
- 《认知机器人》(英文版) Using the Forest to See the Trees Context-based Object Recognition.pdf
- 《认知机器人》(英文版) Hybrid Mode Estimation and Gaussian Filtering with Hybrid HMMs.pdf
- 《认知机器人》(英文版) Model-based Programming and Constraint-based HMMs.pdf
- 《认知机器人》(英文版) Optimal csPs and Conflict-directed.pdf
- 《认知机器人》(英文版) Mapping Topics: Topological Maps.pdf
- 《认知机器人》(英文版) Conflict-directed Diagnosis and Probabilistic Mode Estimation.pdf
- 《认知机器人》(英文版) Fault Aware Systems: Model-based Programming and Diagnosis.pdf
- 《认知机器人》(英文版) Foundations of state Estimation.pdf
- 《认知机器人》(英文版) Temporal Planning in Space.pdf
- 《认知机器人》(英文版) Executing Model-based Programs Using.pdf
- 《认知机器人》(英文版) Foundations of State Estimation PartⅡ.pdf
- 《认知机器人》(英文版) Robot Motion Planning and (a little)Computational Geometry.pdf
- 《认知机器人》(英文版) SIFT SLAM Vision Details.pdf
- 《认知机器人》(英文版) Information Based Adaptive Robotic Exploration.pdf
- 《认知机器人》(英文版) Temporal Plan Execution: Dynamic Scheduling and Simple Temporal Networks.pdf
- 《认知机器人》(英文版) Partially Observable Markov Decision Processes Part II.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 1:Bode plot rules reminder.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 2:Gain and Phase margins.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 5:Control System Design Principles.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义,英文版)Handout 6:Proportional Compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 3:Gain and Phase Margins for unstable.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 4:Root-Locus Review.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)extra.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 7:Lag and PI compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 8:Lead compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 8:Lead compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 12:Plants with right half-plane zeros.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 10:Notch compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 10:Notch compensation.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 13:More about plants with right.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 16:Describing functions, More.pdf
- 美国麻省理工大学:《航空系统的估计与控制》教学资源(讲义)Handout 18:Dual-input describing functions.pdf