西安交通大学:《工程训练之—工业系统的测量》(英文版)LM224-LM324

LM124 LM224-LM324 LOW POWER QUAD OPERATIONAL AMPLIFIERS WIDE GAIN BANDWIDTH:1. 3MHz INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND LARGE VOLTAGE GAIN 100dB D|P14 I VERY LOW SUPPLY CURRENTIAMPLI (Plastic Package 375uA LOW INPUT BIAS CURRENT 20nA LOW INPUT OFFSET VOLTAGE. 5mV max (for more accurate applications, use the equiv alent parts LM124A-LM224A-LM324A which feature 3mV max) SO14 LOW INPUT OFFSET CURRENT. 2nA (Plastic Micropackage) WIDE POWER SUPPLY RANGE SINGLE SUPPLY: +3V TO +30V DUAL SUPPLIES:±15VTO±15V DESCRIPTION These circuits consist of four independent, high TSSOP14 (Thin Shrink Small Outline e Package) gain, intemally frequency compensated operation al amplifiers. They operate from a single power supply over a wide range of voltages. Operation IN CONNECTIONS (top view) from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage ORDER CODE Part Temperature Package Number D LM124-55c+125℃ vc·4 LM224 40°C.+105° LM324 0C,+70C Inverting Input2 6 9 Inverting Input 3 Example LM224N N= Dual in Line Package(DIP) D= Small Outline Package(SO)-also available in Tape& Reel (DT) P=Thin Shrink Small Outline Package (TSSOP)-only available in Tape &Reel (P December 2001
1/13 ■ WIDE GAIN BANDWIDTH : 1.3MHz ■ INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND ■ LARGE VOLTAGE GAIN : 100dB ■ VERY LOW SUPPLY CURRENT/AMPLI : 375µA ■ LOW INPUT BIAS CURRENT : 20nA ■ LOW INPUT OFFSET VOLTAGE : 5mV max. (for more accurate applications, use the equivalent parts LM124A-LM224A-LM324A which feature 3mV max.) ■ LOW INPUT OFFSET CURRENT : 2nA ■ WIDE POWER SUPPLY RANGE : SINGLE SUPPLY : +3V TO +30V DUAL SUPPLIES : ±1.5V TO ±15V DESCRIPTION These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. ORDER CODE N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape &Reel (PT) PIN CONNECTIONS (top view) Part Number Temperature Range Package ND P LM124 -55°C, +125°C ••• LM224 -40°C, +105°C ••• LM324 0°C, +70°C ••• Example : LM224N N DIP14 (Plastic Package) D SO14 (Plastic Micropackage) P TSSOP14 (Thin Shrink Small Outline Package) Inverting Input 2 Non-inverting Input 2 Non-inverting Input 1 VCC - VCC 1 2 3 4 8 5 6 7 9 10 11 12 13 14 + Output 3 Output 4 Non-inverting Input 4 Inverting Input 4 Non-inverting Input 3 Inverting Input 3 - + - + - + - + Output 1 Inverting Input 1 Output 2 LM124 LM224 - LM324 LOW POWER QUAD OPERATIONAL AMPLIFIERS December 2001

LM124-LM224LM324 SCHEMATIC DIAGRAM(1/4 LM124 6uA OOA = Non-inverting sOFA ABSOLUTE MAXIMUM RATINGS Parameter LM124 LM224 Vcc Supply voltage ±16or32 0.3to+32 Power Dissipation N Suffix 500 VVVW D Suffix Output Short-circuit Duration 2) Infinite Toper Opearting Free-air Temperature Range 55to+12540to+105oto+70°C Storage Temperature Range 65t+150 Either or both input voltages must not exceed the magnitude of Vcc or vo 2. o the magsituom of out pe st utive dissipation can resu fran g m aneous shone-cmnauir on lf atppifersent is approximately 4oma independent trans ispor beuren onty waist jasen ae thtaree at any as n input lees is mmsen negative o ts ne collector-base junction of the input PNP This is not destructive and normal output will set up again for input voltage higher than -0 3v 2/13
LM124-LM224-LM324 2/13 SCHEMATIC DIAGRAM (1/4 LM124) ABSOLUTE MAXIMUM RATINGS Symbol Parameter LM124 LM224 LM324 Unit VCC Supply voltage ±16 or 32 V Vi Input Voltage -0.3 to +32 V Vid Differential Input Voltage 1) 1. Either or both input voltages must not exceed the magnitude of VCC+ or VCC- . +32 V Ptot Power Dissipation N Suffix D Suffix 500 500 400 500 400 mW mW Output Short-circuit Duration 2) 2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. Infinite Iin Input Current 3) 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 50 50 50 mA Toper Opearting Free-air Temperature Range -55 to +125 -40 to +105 0 to +70 °C Tstg Storage Temperature Range -65 to +150 °C

LM124-LM224-LM324 ELECTRICAL CHARACTERISTICS Vec+=+5V, Vcc= Ground, Vo=1.4V, Tamb =+25C(unless otherwise specified Sym Parameter Typ. Max Unit Input Offset Voltage-note Tmin≤T 5779 LM324 Input Offset Current Input Bias Current-note 2) 150 Vcc=+15V,RL= 2k]2, Vo=1.4V to 11.4V 5°C VimY 00 SVR Vcc=5V to 30V 110 Supply Current, all Amp, no load Tah=+25°c Vcc=+5V 0.7 +5V 0.8 V=+30v 1.5 Input Common Mode Voltage Range +30V-note Vcc-1.5 Common Mode Rejection Ratio(Rs s 10kQ2 CMr Tamb=+25%C Output Current Source (Vid=+1V) Voc=+15V V mA Output Sink Current (Vid=-1V) cc=+15v,v=+2V 15V,V。=+0.2V 50 High Level Output Voltage 25°C RL =2kS2 T 25°C RL = 10kQ2 ≤T 5v.R:=2k Tanb=+25°C amb ≤T 3/13
LM124-LM224-LM324 3/13 ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input Offset Voltage - note 1) Tamb = +25°C LM324 Tmin ≤ Tamb ≤ Tmax LM324 2 5 7 7 9 mV Iio Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 2 30 100 nA Iib Input Bias Current - note 2) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 20 150 300 nA Avd Large Signal Voltage Gain VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 50 25 100 V/mV SVR Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 65 65 110 dB ICC Supply Current, all Amp, no load Tamb = +25°C VCC = +5V VCC = +30V Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30V 0.7 1.5 0.8 1.5 1.2 3 1.2 3 mA Vicm Input Common Mode Voltage Range VCC = +30V - note 3) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 VCC -1.5 VCC -2 V CMR Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 70 60 80 dB I source Output Current Source (Vid = +1V) VCC = +15V, Vo = +2V 20 40 70 mA Isink Output Sink Current (Vid = -1V) VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 10 12 20 50 mA µA VOH High Level Output Voltage VCC = +30V Tamb = +25°C RL = 2kΩ Tmin ≤ Tamb ≤ Tmax Tamb = +25°C RL = 10kΩ Tmin ≤ Tamb ≤ Tmax VCC = +5V, RL = 2kΩ Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 26 26 27 27 3.5 3 27 28 V

LM124LM224LM324 Symbo Parameter Typ. Max Unit Low Level Output Voltage(RL= 10kQ2) Tmn≤Tamb≤Tmax sR Slew Rate Vcc=15v, Vi=0.5 to 3V,RL=2kQ2, CL= 100pF, unity Gain 0.4 V/us Gain Bandwidth Product 30V, f=100kHz, Vin=10mV, RL=2kQ, CL= 100pF MHZ THD Total Harmonic Distortio f= 1kHz, A= 20dB, Rl=2kQ2, Vo= 2Vpp, CL = 100pF, Vcc= 30V 0.015 % e f= 1kHz, Rs =100Q, Vcc=30V DVio Input Offset Voltage Drift Dlio Input Offset Current Drift 10 00 Channel Separation-note 1kHz≤f≤20kHZ 120 1.V。=1.4V,R=09.5V<vcc.<30v,0<ve<vec"-1.5V exests ren te on te input current is out of the lC. This current is essentially constant, independent of the state of the output so no loading change ity of external components insure that coupling is not originating via stray capacitance between these extemal parts. This typically can be detected as this type of capacitance increases at higher frequences. 4/13
LM124-LM224-LM324 4/13 VOL Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 5 20 20 mV SR Slew Rate VCC = 15V, Vi = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity Gain 0.4 V/µs GBP Gain Bandwidth Product VCC = 30V, f =100kHz,Vin = 10mV, RL = 2kΩ, CL = 100pF 1.3 MHz THD Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC = 30V 0.015 % en Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, VCC = 30V 40 DVio Input Offset Voltage Drift 7 30 µV/°C DIIio Input Offset Current Drift 10 200 pA/°C Vo1/Vo2 Channel Separation - note 4) 1kHz ≤ f ≤ 20kHZ 120 dB 1. Vo = 1.4V, Rs = 0Ω, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. Symbol Parameter Min. Typ. Max. Unit nV Hz -----------

LM124-LM224-LM324 INPUT BIAS CURRENT CURRENT LIMITING (Note 8) versus AMBIENT TEMPERATURE IB(nA) 24 1852 9630 ¥: 55535-15525456585105125 -5-35-15525456581125 AMBIENT TEMPERATURE(C) TEMPERATURE°c INPUT VOLTAGE RANGE SUPPLY CURRENT 15 Negativa Poitive Eu2>d Tamb=0°ct+125°c POSITIVE SUPPLY VOLTAGE MV GAIN BANDWIDTH PRODUCT COMMON-MODE REJECTION RATIO 135 30 zbu 75v 1.15 1k2 1.1 。o 5535-15525456585105125 AMBIENT TEMPERATURE (c) FREQUENCY tHz) 5/13
LM124-LM224-LM324 5/13

LM124-LM224LM324 OPEN LOOP FREQUENCY RESPONSE LARGE SIGNAL FREQUENCY RESPONSE vet2 三u> cc=+30V8 ≤Tamb≤+125°c 25:3 ae+10+5 1.0鲁11k1.16 REOUENCY(Hzl FREQUENCY(Hzl VOLTAGE FOLLOWER PULSE RESPONSE OUTPUT CHARACTERISTICS CURRENT SINKING) 2 三"8 排z 0.091 001 0.1 TIME (us) OUTPUT SINK CURRENT (mA VOLTAGE WER PULSE RESPONSE ICURRENT SOURCINGH vcc 92兰出55 t a001001a TIME ps) oUTPUT SOURCE CURRENT (mA) 6/1
LM124-LM224-LM324 6/13

LM124-LM224-LM324 NPUT CURRENT VOLTAGE GAIN 5hzbz POWER SUPPLY VOLTAGE V POWER SUPPLY VOLTAGE (V POWER SUPPL DN MODE Avd (dB) LARGE SIGNAL VOLTAGE GAIN zu9 105125 45535155254565 AMBIENT TEMPERATURE (CI AMBIENT TEMPERATURE (c TYPICAL SINGLE-SUPPLY APPLICATIONS AC COUPLED INVERTING AMPLIFIER AC COUPLED NON INVERTING AMPLIFIER O hFS nona=11) ikh 11 7113
LM124-LM224-LM324 7/13 TYPICAL SINGLE - SUPPLY APPLICATIONS AC COUPLED INVERTING AMPLIFIER AC COUPLED NON INVERTING AMPLIFIER 1/4 LM124 ~ 0 2VPP R 10kΩ L Co eo R 6.2kΩ B R 100kΩ f R1 CI 10kΩ eI VCC R2 100kΩ C1 10µF R3 100kΩ A =- R R1 V f (as shown A = -10) V 1/4 LM124 ~ 0 2VPP R 10kΩ L Co eo R 6.2kΩ B C1 0.1µF eI VCC (as shown A = 11) V A = 1 + R2 R1 V R1 100kΩ R2 1MΩ CI R3 1MΩ R4 100kΩ R5 100kΩ C2 10µF

LM124-LM224LM324 TYPICAL SINGLE- SUPPLY APPLICATIONS NON-INVERTING DC GAIN DC SUMMING AMPLIFIER e1 100ks2 (As shown Ay= 101) 100k2 e? 100kQ2 00kQ2 100k9 HIGH INPUT Z ADJUSTABLE GAIN DC LOW DRIFT PEAK DETECTOR INSTRUMENTATION AMPLIFIER 2N929〓001F nput current ifR=R5 and R3=R4= R6=R7 R2」e As shown eo=101(e2-el 8/13
LM124-LM224-LM324 8/13 TYPICAL SINGLE - SUPPLY APPLICATIONS NON-INVERTING DC GAIN HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER DC SUMMING AMPLIFIER LOW DRIFT PEAK DETECTOR R1 10kΩ R2 1MΩ 1/4 LM124 10kΩ eI eO +5V e O (V) (mV) 0 AV=1+ R2 R1 (As shown = 101) AV 1/4 LM124 R3 100kΩ eO 1/4 LM124 R1 100kΩ e 1 1/4 LM124 R7 100kΩ R6 100kΩ R5 100kΩ e2 R2 2kΩ Gain adjust R4 100kΩ if R1 = R5 and R3 = R4 = R6 = R7 e0 = (e2 -e1) As shown e0 = 101 (e2 - e1). 1 2R1 R2 + ----------- 1/4 LM124 eO e 4 e 3 e 2 e 1 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ e0 = e1 +e2 -e3 -e4 Where (e1 +e2) ≥ (e3 +e4) to keep e0 ≥ 0V IB 2N 929 0.001µF IB 3R 3MΩ IB Input current compensation eo IB e I 1/4 LM124 Zo ZI C 1µF 2IB R 1MΩ 2IB * Polycarbonate or polyethylene * 1/4 LM124 1/4 LM124

LM124-LM224-LM324 TYPICAL SINGLE- SUPPLY APPLICATIONS ACTIVER BANDPASS FILTER IGH INPUTZ DC DIFFERENTIAL AMPLIFIER F (CMRR depends on this resistor ratio match) +V20 F 1kHz R A=100(400B) As shown eo=(e2·e1) USING SYMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT(GENERAL CONCEPT) LM124 2N929 001μ lB lB 3MS2LM24 ux.amplifier for input current compensation 1.5M 9/13
LM124-LM224-LM324 9/13 TYPICAL SINGLE - SUPPLY APPLICATIONS ACTIVER BANDPASS FILTER HIGH INPUTZ,DC DIFFERENTIALAMPLIFIER USING SYMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT (GENERAL CONCEPT) 1/4 LM124 1/4 LM124 R3 10kΩ 1/4 LM124 e 1 eO R8 100kΩ R7 100kΩ C3 10µF VCC R5 470kΩ C2 330pF R4 10MΩ R6 470kΩ R1 100kΩ C1 330pF Fo = 1kHz Q = 50 Av = 100 (40dB) 1/4 LM124 R1 100kΩ R2 100kΩ R4 100kΩ R3 100kΩ +V2 +V1 Vo 1/4 LM124 For (CMRR depends on this resistor ratio match) R1 R2 ------- R4 R3 = ------- e0 (e2 - e1) As shown e0 = (e2 - e1) 1 R4 R3 + ------- 1/4 I LM124 B 2N 929 0.001µF IB 3MΩ IB I eo I e I IB IB Aux. amplifier for input current compensation 1.5MΩ 1/4 LM124

LM124-LM224LM324 MACROMODEL VN1750.000000e+00 Standard Linear Ics macromodels 1993 DINR 15 18 MDTH 400E-12 * CONNECTIONS VP4182.000000E+00 1 INVERTING INPUT FCP45VOFP3.400000E+01 2 NON-INVERTING INPUT FcN54VOFN3400000E+01 3 OUTPUT F|BP25VOFN2000000E-03 4 POSITIVE POWER SUPPLY F|BN51VOFP2.000000E-03 5 NEGATIVE POWER SUPPLY AMPLIFYING STAGE F|P519voFP3.600000E+02 SUBCKT LM124 1 32 4 5(analog) F|N519VoFN3.600000E+02 本水水本水水水水水水***RG11953652997E+06 MODEL MDTH D IS=1E8KF=3.104131E-15RG21943652997E+06 cc1956.000000E09 INPUT STAGE DOPM 19 22 MDTH 400E-12 C|P251.000000E-12 DONM 21 19 MDTH 400E-12 c|N151.000000E12 HoPM2228VoUT7500000E+03 E|P105251 E|N165151 HONM2127VoUT7500000E+03 R|P10112.600000E+01 VNM5271.500000E+02 R|N15162.600000E+01 EOUT26231951 Rs11152.003862E+02 VOUT 235 0 D|P1112MDTH400E-12 ROUT 26 3 20 DIN 15 14 MDTH 400E-12 coUT351.000000E-12 VOFP 12 13 DC 0 DOP 19 25 MDTH 400E-12 VOFN 13 14 DC 0 VOP4252.242230E+00 PoL1351.000000E05 DON 24 19 MDTH 400E-12 cPs11153.783376E09 VoN2457922301E-01 DINN 17 13 MDTH 400E-12 ENDS ELECTRICAL CHARACTERISTICS Vcc =+15V,Vcc=ov, Tamb=25C(unless otherwise specified) Symbol Conditions Value Unit 0 =2k 100 lccNo load, per amplifier 350 15to+13.5 VOH RL=2kQ(Vcc*=15V) 0+2VV。=+15V GBPRL=2kQ2, CL=100pF 1.3 SRRL-2KO2,CL=100pF 10/13
LM124-LM224-LM324 10/13 MACROMODEL ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM124 1 3 2 4 5 (analog) ******************************* ************************ .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS ELECTRICAL CHARACTERISTICS Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Value Unit Vio 0 mV Avd RL = 2kΩ 100 V/mV I cc No load, per amplifier 350 µA Vicm -15 to +13.5 V VOH RL = 2kΩ (VCC+=15V) +13.5 V VOL RL = 10kΩ 5 mV Ios Vo = +2V, VCC = +15V +40 mA GBP RL = 2kΩ, CL = 100pF 1.3 MHz SR RL = 2kΩ, CL = 100pF 0.4 V/µs
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安交通大学:《工程训练之—工业系统的测量》工业系统测量课程设计说明.doc
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)LM78XX Series voltage Regulators.pdf
- 西安交通大学:《工程训练之—工业系统的测量》直流稳压电源的调试.pdf
- 西安交通大学:《工程训练之—工业系统的测量》第八讲 位移测量.pps
- 西安交通大学:《工程训练之—工业系统的测量》第十讲 鼠标器分析.pps
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)AD590.pdf
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)Low offset Voltage Operational Amplifier.pdf
- 西安交通大学:《工程训练之—工业系统的测量》第七讲 转速测量及频压转换.pps
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)LM79XX Series 3-Terminal Negative.pdf
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)LM78XX Series voltage Regulators.pdf
- 西安交通大学:《工程训练之—工业系统的测量》绪论.pps
- 西安交通大学:《工程训练之—工业系统的测量》第九讲 信号输出与显示.pps
- 西安交通大学:《工程训练之—工业系统的测量》第六讲 温度的测量.pps
- 西安交通大学:《工程训练之—工业系统的测量》第十一讲 软驱分析.pps
- 西安交通大学:《工程训练之—工业系统的测量》第五讲 力的测量与差动放大.pps
- 西安交通大学:《工程训练之—工业系统的测量》第四讲 工业测量系统概述.pps
- 西安交通大学:《工程训练之—工业系统的测量》第三讲 直流稳压电源调试.pps
- 西安交通大学:《工程训练之—工业系统的测量》第二讲 常用元器件认知.pps
- 西安交通大学:《工程训练之—工业系统的测量》第一讲 常用仪器的使用.pps
- 西安交通大学:《工程训练之—工业系统的测量》教学进度.doc
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)ICL7106,CL7107, ICL7106S, ICL7107S.pdf
- 西安交通大学:《工程训练之—工业系统的测量》课程设计操作要求.doc
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)TO-92 Plastic-Encapsulate Transistors.pdf
- 西安交通大学:《工程训练之—工业系统的测量》(英文版)TO-220 Plastic-Encapsulate Transistors.pdf
- 哈尔滨工业大学:《数控技术》第一章 概论.ppt
- 哈尔滨工业大学:《数控技术》第二章 数控加工的程序编制.ppt
- 哈尔滨工业大学:《数控技术》第三章 机床数控装置的插补原理.ppt
- 哈尔滨工业大学:《数控技术》第四章 计算机数控(CNC)装置.ppt
- 哈尔滨工业大学:《数控技术》第五章 数控检测技术.ppt
- 哈尔滨工业大学:《数控技术》第六章 数控伺服系统.ppt
- 哈尔滨工业大学:《数控技术》开放式综合数控实验系统.ppt
- 哈尔滨工业大学:《数控技术》数控技术的基本知识和现代数控的发展方向.ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第四章 电路定理(Circuit Theorems).ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)绪论(主讲:周孟然).ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第一章 电路模型和电路定律.ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第三章 电阻电路的一般分析.ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第二章 电阻电路的等效变换.ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第五章 含有运算放大器的电阻电路.ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第七章 二阶电路.ppt
- 安徽理工大学:《电路理论》课程教学资源(PPT课件讲稿)第六章 一阶电路.ppt