上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 46_Diesel cycle and dual cycle

上游充通大学 SHANGHAI JIAO TONG UNIVERSITY Engineering Thermodynamics I Lecture 46 Chapter 9 Gas Power Cycles Spring,5/9/2019 Prof.,Dr.Yonghua HUANG 强 目e http://cc.sjtu.edu.cn/G2S/site/thermo.html 1日G
Engineering Thermodynamics I Lecture 46 Spring, 5/9/2019 Prof., Dr. Yonghua HUANG Chapter 9 Gas Power Cycles http://cc.sjtu.edu.cn/G2S/site/thermo.html

Diesel and Dual Cycles ns Exbaud Air Standard Diesel Cycle for CI Engines: Top dead p 2 3 s=const p const 4 const V s=const I 1 1 1 Qout V3 V1=V4 S1=S2 S3=S4 Define: r三 ="cutoff ratio"compression ratio r= -=- 上降文通大学 May9,2019 2 SHANGHAI JIAO TONG UNIVERSITY
May 9, 2019 2 Diesel and Dual Cycles Air Standard Diesel Cycle for CI Engines: qout s T 1 2 4 3 s1=s2 s3=s4 qin qout V p 1 2 4 3 V1=V4 qin V2 V3 3 BDC 1 c 2 2 TDC V V V Define : r " " compression ratio r V V cutoff ratio V

Continue Diesel Cycle s=const Diesel Cycle Energy Balances: const Assuming: V3 V1=V4 ·w=0 only during heat transfer4→l;△KE=△PE=0 Air is ideal gas,constant specific heats du=0 Wnet W23+W34-lw121=qin -lqoutl ·during process2→3,wist0(change in volume) qin-W23=(u3-u2) →qin=(u3-u2)+W23=(u3-u2)+P23(V3-V2) =h3-h2 dout u4 -U1 上游通大学 May9,2019 3 SHANGHAI JIAO TONG UNIVERSITY
May 9, 2019 3 Continue Diesel Cycle Diesel Cycle Energy Balances: • Assuming: • w = 0 only during heat transfer 4 1; DKE = DPE = 0 • Air is ideal gas, constant specific heats wnet = w23 + w34 – |w12| = qin – |qout| • during process 2 3, w is ≠0 (change in volume) qin – w23= (u3 – u2 ) qin = (u3 – u2 ) + w23 = (u3 – u2 ) + p23 (v3 – v2 ) = h3 – h2 qout = u4 – u1 d 0 u V p 1 2 4 3 V1=V4 qin V2 V3

Continue Diesel Cycle T p=const Diesel cycle efficiency: v=const For m-constant:.=V3 and r=V I V2 Qout Wret=m-l9oul=1-9ou=1-u-UL=1-C(T,-T) S1=S2 S3= A Qin Qin h3-h2 cp(T3-T2) …减 k(T3-T2) k-1 For is-→2是-/ For a constant pressure process2→3:p2=P3→ RT2 RT T → V2 V3 V2 上游充通大 May9,2019 4 SHANGHAI JIAO TONG UNIVERSITY
May 9, 2019 4 Continue Diesel Cycle Diesel cycle efficiency: 3 1 c 2 2 v v For m=constant: r and r v v s T 1 2 4 3 s1=s2 s3=s4 qin qout net v 4 1 in out out 4 1 th in in in 3 2 p 3 2 w c (T T ) q q q u u 1 1 1 q q q h h c (T T ) 4 1 3 2 4 1 1 th 3 2 2 T T T T 1 (T T ) T 1 1 k(T T ) T k 1 k 1 2 1 k 1 1 2 T v For isentropic process 1 2: r T v 2 3 3 3 2 3 c 2 3 2 2 RT RT T v For a constant pressure process 2 3: p p r v v T v

Continue Diesel Cycle s const Continue Diesel cycle efficiency: S const For isentropic process3→4: V2 V3 V1=V4 K- Then,r 1 =1- 1-1 (const.k) T k(。-) Thus,for a given r:mth.Dieselnth.outo! 上游通大学 May9,2019 5 SHANGHAI JLAO TONG UNIVERSITY
May 9, 2019 5 Continue Diesel Cycle Continue Diesel cycle efficiency: k 1 k 1 k 1 k 1 2 k 1 2 3 4 1 1 1 2 2 k 1 k 1 4 3 3 3 3 1 3 k 1 k 1 k 4 3 3 3 3 3 k c 1 2 2 2 2 2 For isentropic process 3 4: T V T V V V T T V T V V V V T V T T V V V V r T T V V V V k 1 2 1 1 2 T v T v (const. k) 4 1 3 2 k c k 1 th 2 1 c 1 T T T T 1 T Then, 1 T k 1 1 r 1 1 r k(r 1) V p 1 2 4 3 V1=V4 qin V2 V3 Thus, for a given r : ! th,Diesel th,Otto

Continue Diesel Cycle Continue Diesel cycle efficiency: T V=const_-一,3oto 3piesel p const 4 const for a given r:Tth.Diesel th.ouo V I I I Qout S1=S2 S3=S4 However,Diesel cycle typically operates at higher r! 上游充通大 May9,2019 6 SHANGHAI JIAO TONG UNIVERSITY
May 9, 2019 6 Continue Diesel Cycle Continue Diesel cycle efficiency: s T 1 2 4 s1=s2 s3=s4 qin qout 3Diesel 3Otto th,Diesel th,Otto for a given r : ! However, Diesel cycle typically operates at higher r!

Characteristics of Four Stroke Compression Ignition Spark Ignition Engines Characteristics Compression-Ignition Engine Spark-Ignition Engine Compression Ratio 14-22:1 5-8:1 Ignition Compression Electric Spark Thermal Efficiency 30-60% 25-30% Fuel induction Injector Carburettor (Fuel Injection) Fuel System Fuel Oil /Diesel Gasoline LP gas) Fire Hazard Less Greater Power Variation Increase in Fuel Increase in Air/Fuel Mixture Air Induction Constant Variable(Throttle Airflow) Air-Fuel Ratio 15-100:1 10-20:1 Relative Fuel Consumption Lower Higher Energy per litre of fuel Higher Lower Manifold Throttle Absent Present Exhaust Gas Temperature 482°C/900F 704°C/1300F Starting Harder Easier Lubricants Heavy duty oils Regular and Premium Oils Speed Range Limited(600-3200 rpm) Wide range (400-6000 rpm) Engine Mass per Horsepower 8kg17.51b) Average 4 kg(9 1b) Initial Cost High Much Lower Lugging ability (Torque) Excellent Less 上游充通大学 May9,2019 7 SHANGHAI JIAO TONG UNIVERSITY
May 9, 2019 7 Characteristics of Four Stroke Compression Ignition & Spark Ignition Engines

Example 46.1 for Diesel Cycle Given: ·Ideal Diesel cycle: r=18,re=2,p1=0.1MPa,T1=300K Find: Pressures,temperatures and specific volumes at all state points Heat input,net work output and thermal efficiency ●MEP Assumption: (1)air-standard assumptions (2)△KE=0,△PE=0 上游通大学 May9,2019 8 SHANGHAI JLAO TONG UNIVERSITY
May 9, 2019 8 Example 46.1 for Diesel Cycle Given: • Ideal Diesel cycle: r = 18, rc = 2, p1 = 0.1 MPa, T1 = 300 K Find: • Pressures, temperatures and specific volumes at all state points • Heat input, net work output and thermal efficiency • MEP Assumption: (1) air-standard assumptions (2) DKE=0, DPE=0

Continue Example 46.1 Solution: D 2 3 T 3 V32 = 02 s=c p=c S=C 4 U=C 巧 =18 P1 =0.1 MPa T1=300K U Assumptions: 1.The air in the piston-cylinder assembly is the closed system. 2.The compression and expansion processes are adiabatic. 3.All processes are internally reversible. 4.The air is modeled as an ideal gas. 5.Kinetic and potential energy effects are negligible. 上降文通大学 May9,2019 9 SHANGHAI JLAO TONG UNIVERSITY
May 9, 2019 9 Continue Example 46.1 Solution: Assumptions: 1. The air in the piston–cylinder assembly is the closed system. 2. The compression and expansion processes are adiabatic. 3. All processes are internally reversible. 4. The air is modeled as an ideal gas. 5. Kinetic and potential energy effects are negligible

Continue Example 46.1 p=c Tab.A-17 v=c T1=300K,p1=1atm→u1=214.07k/kg,V1=621.2 ∠T1=300K Process 1-2: 621.2 =34.51 18 T2=898.3K Tab.A-17 h2=930.98k/kg EoS T2Vi P2=PIT V2 (0.0 898.3 (18)=5.39MPa 300 Process 2-3: T3= ,=7,=28983)=176.6K h3=1999.1k/kg Tab.A-17 Vr3=3.97 Process 3-4: V Va V2 1 U4= V2 V3 3=3= 23.97)=35.73 u4=664.3k/kg Tab.A-17 T4=887.7 Process 4-1: 887.7K EoS =(0.1MPa)l 0.3 MPa 300K 上游充通大 May9,2019 10 SHANGHAI JIAO TONG UNIVERSITY
May 9, 2019 10 Continue Example 46.1 T1 = 300 K, p1=1atm u1= 214.07kJ/kg, vr1=621.2 Process 1-2: Process 2-3: Process 3-4: Process 4-1: Tab. A-17 S Tab. A-17 T2=898.3 K h2 = 930.98 kJ/kg EoS p Tab. A-17 h3=1999.1 kJ/kg vr3 = 3.97 S u4=664.3 kJ/kg T4 = 887.7 Tab. A-17 EoS
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 45_Air standard cycle, internal combustion engines, Otto cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 43-44_Vapor-compression refrigeration, Heat pump systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 41-42_superheat and reaheat.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 39-40_vapor power cycles.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 38_Exergy of CV systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 37_Concept of exergy and apply to CM systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 36_Heat transfer and Work of internal reversible, ss flow.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 35_Isentropic processes, Isentropic efficiencies.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 34_Entropy balance to open systems.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 33_Entropy increase principle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 32_Internally reversible processes, Closed system entropy balance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 31_Retrieve entropy data.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 28_Clausius inequality and Entropy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 27_Carnot Cycle.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 25-26_Applying 2nd law to thermodynamic cycles, Maximum performance.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 23-24_Introducing 2nd law, concept of irreversibilities.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 22_Transient analysis of Energy.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 20-21_Illustrations_3 Heat exchangers, throttling devices, System integration.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 19_Illustrations_2 Compressors, pumps.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 18_Illustrations_1 Nozzles, diffusers, turbines.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 47_Compressor, compression with intercooling.pdf
- 上海交通大学:《热力学 Thermodynamics(I)》课程教学资源(课件讲义)Lecture 48_Review and Final Exam.pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_全美经典学习指导系列——工程热力学.pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_Challenges to the Second Law of Thermodynamics.pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_Fundamentals of Engineering Thermodynamics(8th Ed).pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_Fundamentals of Engineering Thermodynamics, 7th Edition.pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_Fundamentals.of.Engineering.Thermodynamics.8th.edition.pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_THE MECHANICAL THEORY OF HEAT(R Clausius).pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献_Thermodynamics An Engineering Approach 8th Ed.pdf
- 《热力学 Thermodynamics(I)》课程教学资源:阅读书籍文献(中国物理学前辈——胡刚复).pdf
- 上海交通大学:《医用物理学》课程教学资源(PPT课件)流体力学(Fluid Mechanics).ppt
- 上海交通大学:《物理异想》课程教学资源(论文资料)我要飛得更高.pdf
- 上海交通大学:《物理异想》课程教学资源(论文资料)活在“天宮”——太空生活的行、眠、食.pdf
- 上海交通大学:《物理异想》课程教学资源(论文资料)“戴”著竹蜻蜓飛翔.pdf
- 上海交通大学:《物理异想》课程教学资源(论文资料)人類的飛天夢——載人航太飛船.doc
- 上海交通大学:《物理异想》课程教学资源(论文资料)白衣天使的翅膀.docx
- 上海交通大学:《物理异想》课程教学资源(论文资料)征服蓝天,像鸟一样地飞翔.docx
- 上海交通大学:《物理异想》课程教学资源(论文资料)是什么造就了“飞鱼”——菲尔普斯?.docx
- 上海交通大学:《物理异想》课程教学资源(论文资料)讓電子飛.pdf
- 上海交通大学:《物理异想》课程教学资源(论文资料)人类的飞行梦.docx