麻省理工大学:《生物工程》教学讲义(英文版)tutorial stat

STATISTICAL MECHANICS BEH.410 Tutorial Maxine jonas February 14, 2003
STATISTICAL MECHANICS BEH.410 Tutorial Maxine Jonas February 14, 2003

Why Statistical Mechanics Understand predict the physical properties of macroscopic systems from the properties of their constituents Deterministic approach ma=F need of 6N coordinates at t r: and u but typically n= moles (1023)! “ Ensemble” rather than microscopic detail and its surroundings microcanonical, canonical, grand canonical
Why Statistical Mechanics? Understand & predict the physical properties of macroscopic systems from the properties of their constituents Deterministic approach - n e e d o f 6N coordinates at t 0: ri and vi - b u t t y p i c a l l y N ≡ moles (1023) ! “Ensemble” rather than microscopic detail … and its surroundings ¾microcanonical, canonical, grand canonical

What with Statistical mechanics? Averages, distributions, deviation estimates of microstates: specification of the complete set of positions and momenta at any given time ( points on the constant energy hypersurface for Hamiltonian dynamics Ensemble average ergodic hypothesis A=(numbe va(e)=iIF a(x(t))dt T time, will visit all possible microscopic states availableto ant of A system that is ergodic is one which, given an infinite amo
What With Statistical Mechanics? Averages, distributions, deviation estimates… … of microstates: specification of the complete set of positions and momenta at any given time (points on the constant energy hypersurface for Hamiltonian dynamics) Ensemble average & ergodic hypothesis: A system that is ergodic is one which, given an infinite amount of time, will visit all possible microscopic states available to it

The first Law- Work Work, heat energy basic concepts Energy of a system = capacity to do work At the molecular level, difference in the surroundings Energy transfer that makes use of Heat chaotic molecular motion Work .organized molecular motion △U=q+w state function -independent of how state was reached
The First Law – Work Work, heat & energy = basic concepts Energy of a system = capacity to do work ¾ At the molecular level, difference in the surroundings state function – independent of how state was reached Energy transfer that makes use of… Heat … chaotic molecular motion Work … organized molecular motion

Second law- Gibbs Spontaneous processes increase the overall"disorder of the universe Reasoning through an example microstates to achieve macrostate Gibbs postulate: for an isolated system, all microstates compatible with the given constraints of the macrostate Chere E,v and w are equally likely to occur Here 2 ways to distribute n molecules into 2 bulbs
Second Law – Gibbs Spontaneous processes increase the overall “disorder” of the universe Reasoning through an example - microstates to achieve macrostate Gibbs postulate: for an isolated system, all microstates compatible with the given constraints of the macrostate (here E, V and N) are equally likely to occur - Here 2N ways to distribute N molecules into 2 bulbs

Second law- probability Number of (indistinguishable) ways of placing L of the molecules in the left bulb N W L! ( N-L Probability WL/2 maximum if L=N/2 √ With n=1023,p(L=R±1010)=10434 possible but extremely unlikely
Second Law - Probability L Number of (indistinguishable) ways of placing L of the N molecules in the left bulb: Probability WL / 2N maximum if L = N / 2 9 With N = 1023, p ( L = R ± 10-10 ) = 10-434 possible but extremely unlikely

Second Law-Entropy Boltzmann’ s constant s=kInw k=138x1023JK1 ∑ pi n p ● Principle of fair Apportionment N Multiplicity of outcomes n1!,!n, N N n(n2(n n n2n, P! P2P
Second Law - Entropy Boltzmann’s constant k = 1.38 x 10-23 J.K-1 Principle of Fair Apportionment Multiplicity of outcomes

Second Law-Entropy The absolute entropy s=kInw Is never negative ∑PlnP S≥0 S max at equilibrium pi InW==>nIn P2 0 0.69 t=1 Order l/21/2 N k Nk N hnW=∑P n e s w 133 139 Flat distribution= high s 31414 “间邮
Second Law - Entropy The absolute entropy is never negative S ≥ 0 S max at equilibrium 0 0rder 1.33 1.39 0.69 Flat distribution ≡ high S pi 1 0 0 0 0 0 n e s w 1/2 1/2 1/3 1/3 1/6 1/6 1/4 1/4 1/4 1/4

The boltzmann distribution law Maximum entropy principle constraints E B3容冷S=∑P ∑PE N ∑ exponential distribution E kT ∑ Partition function @=Expl
The Boltzmann Distribution Law Maximum entropy principle + constraints E 3 E 2 E 1 ⇒ exponential distribution Partition function

The Boltzmann Distribution Law(2) E More particles have low energy kT more arrangements that way hight.Q= connection between microscopic models macroscopic thermodynamic properties U=kT(OIng and S=kIng+hp/ aIn Q OT medium t- Q= number of states effectively accessible to system Q=∑ep E teEn/kr -Et/kr kT I+e-2/kT E T→+∞0→→0→0>1+1+1+..+1=t low T RT
The Boltzmann Distribution Law (2) Q ≡ number of states effectively accessible to system E low T E high T E medium T Q ≡ connection between microscopic models & macroscopic thermodynamic properties and More particles have low energy: more arrangements that way
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《保护生物学》课程教学资源(PPT课件讲稿)第十三讲 野生动植物保护法规及国际保护组织.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第七讲 生态恢复.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第十一讲 迁地保护续.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第五讲 自然保护区.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第九讲 生态环境教育.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第八讲 生物多样性保护与可持续发展.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第七讲 生物入侵与生物安全.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第四讲 物种的濒危等级与保护先序续.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第四讲 物种的濒危等级与保护先序.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第三讲 生物多样性演化及其影响因素.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第二讲 生物多样性 Biodiversity.ppt
- 《保护生物学》课程教学资源(PPT课件讲稿)第一讲 概论.ppt
- 《保护生物学》课程教学资源(教案讲义)第十三章 野生动植物保护法规及有关国际协定和国际组织.doc
- 《保护生物学》课程教学资源(教案讲义)第八章 生物多样性保护与可持续发展.doc
- 《保护生物学》课程教学资源(教案讲义)第九章 生态环境教育.doc
- 《保护生物学》课程教学资源(教案讲义)第十二章 生态恢复与重建.doc
- 《保护生物学》课程教学资源(教案讲义)第十一章 迁地保护.doc
- 《保护生物学》课程教学资源(教案讲义)第七章 生物入侵与生物安全.doc
- 《保护生物学》课程教学资源(教案讲义)第十章 自然保护区.doc
- 《保护生物学》课程教学资源(教案讲义)第五章 生境的破坏、片断化与退化.doc
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 1 Molecular Cellular.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 2 slides.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 2 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 3 slides.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 4 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 6 slides.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 4 slides.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 3 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 5 slides.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 5 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 6 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 7.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 9.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 8.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec11 12slid.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 9 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 11 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 13 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 12 notes.pdf
- 麻省理工大学:《生物工程》教学讲义(英文版)lec 14 notes.pdf