Adaptive Dynamic Bipartite Graph Matching:A Reinforcement Learning Approach

Adaptive Dynamic Bipartite Graph Matching A Reinforcement Learning Approach Yansheng Wang 1, Yongxin Tong1, Cheng Long2, Pan Xu3, Ke Xu1, Weifeng Lv 1 1 Beihang University 2 Nanyang Technological University 3 University of Maryland, College Park ERSIT 南洋埋工大學 4 NANYANO 9 TECHNOLOGICA UNIVERSIT RYLA
Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning Approach Yansheng Wang 1 , Yongxin Tong 1 , Cheng Long 2 , Pan Xu 3 , Ke Xu 1 , Weifeng Lv 1 1 Beihang University 2 Nanyang Technological University 3 University of Maryland, College Park

Outline e background and motivation ● Problem statement ° Our so| utions ● EXperiments Conclusion
Outline ⚫ Background and Motivation ⚫ Problem Statement ⚫ Our Solutions ⚫ Experiments ⚫ Conclusion 2

Outline o Background and Motivation ● Problem statement ° Our so| utions ● EXperiments Conclusion
Outline ⚫ Background and Motivation ⚫ Problem Statement ⚫ Our Solutions ⚫ Experiments ⚫ Conclusion 3

Background Bipartite graph matching 3 Solved by the Hungarian method 4 in polynomial time 6 Harold w, Kuhn Traditional applications Assignment problem, vehicle scheduling problem, etc. Perform well in offline scenarios
⚫ Bipartite graph matching ⚫ Traditional applications ⚫ Assignment problem, vehicle scheduling problem, etc. ⚫ Perform well in offline scenarios Background 4 3 1 2 4 5 6 2 3 4 1 2 Solved by the Hungarian method in polynomial time Harold W. Kuhn

Background Emergence of online scenarios Transportation Medical Economic Taxi-hailing, Mutual blood donation, Two-sided market, Ride sharing, Kidney exchange,… Crowdsourcing, 回 UNOS amazon THOO!! UBER ANSWERS UNITED NETWORK FOR ORGAN SHARING mechanical turk Online matching is more and more important
⚫ Emergence of online scenarios Background 5 Transportation Medical Economic Taxi-hailing, Ride sharing, … Mutual blood donation, Kidney exchange, … Two-sided market, Crowdsourcing, … Online matching is more and more important

Existing Research Problem model: online bipartite matching Objective: Nodes arrive and maximize the leave dynamically sum of weights 3 Match as soon as the node arrives 4 (instantaneous constraint) 5 Solution: online algorithms under instantaneous constraint Y. Tong et al, On line mobile microtask allocation in spatial crowdsourcing In ICDE 2016
⚫ Problem model: online bipartite matching ⚫ Solution: online algorithms under instantaneous constraint Existing Research 6 3 1 2 4 5 6 Nodes arrive and leave dynamically 2 3 4 1 2 Objective: maximize the sum of weights Match as soon as the node arrives (instantaneous constraint) Y. Tong et al, Online mobile microtask allocation in spatial crowdsourcing. In ICDE 2016

Motivation Instantaneous constraint is too strong sometimes Waiting for response Accuracy: 70%)( Accuracy: 95% 加点小费②000 Passengers can wait for a short time drivers nearby have before being served received your order 17:00 17:30 Requseters are willing 02:54 to wait for more I have a task of labeling 500 reliable workers pictures If nodes can wait(match in a batch manner) More information can be gathered Likely to meet better candidates in the future I LKazemiet al, Geocrowd: enablingquery answering with spatial crowdsourcing In GIS 2012
⚫ Instantaneous constraint is too strong sometimes ⚫ If nodes can wait (match in a batch manner) ⚫ More information can be gathered ⚫ Likely to meet better candidates in the future Motivation 7 Waiting for response 2 drivers nearby have received your order Passengers can wait for a short time before being served Requseters are willing to wait for more reliable workers 17:00 17:30 I have a task of labeling 500 pictures Accuracy:70% Accuracy:95% L. Kazemi et al. Geocrowd: enabling query answering with spatial crowdsourcing. In GIS 2012

Limitation of existing work 8 Strong assumptions: instantaneous constraint Batch manner: fixed batch and lacking in global theoretical guarantee Y Tong et al, Online mobile microtask allocation in spatial crowdsourcing In ICDE 2016 Y. Tong et al, Flexible dynamic task assignment in real-time spatial data In VLDB 2017. P Cheng et al, An experimentalevaluation of task assignment in spatial crowdsourcing. In VLDB 2018 L. Kazemiet al Geocrowd: enabling query answering with spatial crowdsourcing In GIS 2012 L. Kazemiet al Geo TruCrowd: trustworthy query answering with spatial crowdsourcing In GIS 2013
Limitation of existing work 8 ⚫ Strong assumptions: instantaneous constraint ⚫ Batch manner: fixed batch and lacking in global theoretical guarantee Y. Tong et al, Online mobile microtask allocation in spatial crowdsourcing. In ICDE 2016. Y. Tong et al, Flexible dynamic task assignment in real-time spatial data. In VLDB 2017. L. Kazemi et al. Geocrowd: enabling query answering with spatial crowdsourcing. In GIS 2012. L. Kazemi et al. GeoTruCrowd: trustworthy query answering with spatial crowdsourcing. In GIS 2013. P. Cheng et al, An experimental evaluation of task assignment in spatial crowdsourcing. In VLDB 2018

Contribution Devise a novel adaptive batch-based framework Analyze the global theoretical guarantee Propose an effective and efficient reinforcement learning based solution
Contribution 9 ⚫ Devise a novel adaptive batch-based framework ⚫ Analyze the global theoretical guarantee ⚫ Propose an effective and efficient reinforcement learning based solution

Outline e background and motivation ● Problem statement ° Our so| utions ● EXperiments Conclusion
Outline ⚫ Background and Motivation ⚫ Problem Statement ⚫ Our Solutions ⚫ Experiments ⚫ Conclusion 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国科学技术大学:《网络安全协议》课程教学资源(PPT课件讲稿)第一章 网络安全综述 Network Security Protocols(薛开平).ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第二章 物理层.ppt
- Excel 2010高级使用技巧(PPT讲稿).ppt
- 《数据库原理》课程教学资源(PPT课件讲稿)第三章 关系数据库标准查询语言SQL.pps
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第一章 计算机网络概述(主讲:阮晓龙).pptx
- 《软件工程导论》课程教学资源(PPT课件讲稿)第9章 面向对象方法学.ppt
- 南京航空航天大学:《C++》课程电子教案(PPT课件讲稿)第3章 类的基础部分(主讲:陈哲).ppt
- 南京大学:使用失效数据来引导决定(PPT讲稿,计算机系:赵建华).ppt
- 南京大学:《Java语言程序设计》课程教学资源(PPT课件讲稿)第2章 Java语言语法基础.ppt
- 上海交通大学:并发理论(PPT课件诗篇)Concurrency Theory.ppt
- 《UNIX操作系统基础》课程教学资源(PPT课件讲稿)第三章 UNIX的文件与目录.ppt
- 《计算机网络 Computer Networking》课程教学资源(PPT课件讲稿)Chapter 6 无线和移动网络 Wireless and Mobile Networks.ppt
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)小波分析 Wavelet Analysis(主讲:曹洋).pptx
- 《知识发现和数据挖掘 Knowledge Discovery and Data Mining》课程教学课件(PPT讲稿)Chapter 10. Cluster Analysis:Basic Concepts and Methods.pptx
- 《人工智能原理及应用》课程教学大纲 Artificial Intelligence Principles and Applications.doc
- 西安电子科技大学:《接入网技术及其应用》课程教学资源(PPT课件讲稿)第6章 接入网应用(徐展琦).ppt
- 《管理信息系统原理及开发》课程教学资源(PPT课件讲稿)第3、4讲 管理信息系统的系统设计.ppsx
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第四章 公钥密码(主讲:董庆宽).pptx
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第二章 计算机的前世今生(主讲:许成刚).ppt
- 《计算机软件及应用》课程教学资源(PPT课件讲稿)第2章 Photoshop CS入门基础.ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2016)第8章 流计算.ppt
- 四川大学:《Java面向对象编程》课程PPT教学课件(Object-Oriented Programming - Java)Unit 1.1 Java Applications 1.1.1 Applications in Java(熊运余).ppt
- 四川大学:《计算机操作系统 Operating System Principles》课程教学资源(PPT课件讲稿)第5章 死锁.ppt
- 数据结构与算法(PPT课件讲稿)Data Structures and Algorithms.pptx
- 《单片机原理与应用》课程教学资源(PPT课件讲稿)第7章 显示与开关/键盘输入及微型打印机接口设计.ppt
- 曙光:并行程序设计简介(PPT讲座).ppt
- 安徽工贸职业技术学院:《计算机组装与维护》课程教学资源(PPT课件讲稿)项目五 微型计算机维护.ppt
- 白城师范学院:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第二章 关系数据库(2.4 关系代数 2.5 关系演算 2.6 小结).ppt
- 《程序设计基础》课程教学资源:实验教学大纲.pdf
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)关联规则 Association Rule.pptx
- 《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 11 Bundle adjustment Structure reconstruction SFM from N-frames.pptx
- 电子科技大学:《计算机操作系统》课程教学资源(PPT课件讲稿)第三章 处理机的调度和死锁.ppt
- 香港科技大学:Clustering(PPT讲稿).ppt
- 上海交通大学:TLS/SSL Security(PPT课件讲稿).pptx
- 山东大学计算机学院:《人机交互技术》课程教学资源(PPT课件讲稿)第7章 Web界面设计.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第三章 IAP15W4K58S4单片机的硬件结构.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)面向方面的编程 Aspect Oriented Programming.ppt
- 武昌首义学院:Word的基本操作与技巧(PPT讲稿,主讲:张旋子).pptx
- 《VB程序设计》课程教学资源(PPT课件讲稿)第八章 过程.pps
- 湖南生物机电职业技术学院:《电子商务概论》课程教学资源(PPT课件)第五章 网络信息搜索.ppt