《图像处理与计算机视觉 Image Processing and Computer Vision》课程教学资源(PPT课件讲稿)Chapter 11 Bundle adjustment Structure reconstruction SFM from N-frames

Image processing and Computer Vision Chapter 11: Bundle adjustment Structure reconstruction sfm from N-frames Pose estimation vo.a
Image Processing and Computer Vision Chapter 11: Bundle adjustment Structure reconstruction SFM from N-frames Pose estimation V0.a 1

Reconstruction from n-frames Factorization(inear, fast, not too accurate) Bundle adjustment (slower but more accurate) can use factorization results as the first guess Non linear iterative methods are more accurate han linear method require first guess (e.g. from factorization) Many different implementations but the concept is the same Pose estimation vo.a
Reconstruction from N-frames • Factorization (linear, fast, not too accurate) • Bundle adjustment (slower but more accurate), can use factorization results as the first guess. – Non linear iterative methods are more accurate than linear method, require first guess (e.g. From factorization). – Many different implementations, but the concept is the same. Pose estimation V0.a 2

Problem definition There are n features in the 3d object We takei pictures of the object at different VIews Input · Image sequence I2…lr Each image has n image feature points Output (structure=model, and motion=pose) 3-d coordinates of all 3-d model points x,x.X N Camera pose for each image taken [r()t(t)t=l, .T Pose estimation vo.a
Problem definition • There are N features in the 3D object . • We take pictures of the object at different views. • Input : • Image sequence I1 ,I2 ,…I . • Each image has n image feature points • Output (structure=model, and motion=pose) • 3-D coordinates of all 3-D model points X1 ,X2 ,..,XN . • Camera pose for each image taken [R(t),T(t)] t=1,… Pose estimation V0.a 3

Example: Bundle adjustment 3D reconstruction (see also http://www.cse.cuhk.edu.hk/khwong/demo/index.html) grand canyon demo lask · robot http://www.youtube.com/watch?v=2klfrillOjc http://www.youtube.com/watch?v=xgcnv--wf2k http://www.youtube.com/watch?v=onx4cyyyyri http://www.youtube.com/watch?v=4h1pn2dis6g Pose estimation vo.a
Example: Bundle adjustment 3D reconstruction (see also http://www.cse.cuhk.edu.hk/khwong/demo/index.html) • Grand Canyon Demo • Flask • Robot Pose estimation V0.a 4 http://www.youtube.com/watch?v=2KLFRILlOjc http://www.youtube.com/watch?v=4h1pN2DIs6g http://www.youtube.com/watch?v=ONx4cyYYyrI http://www.youtube.com/watch?v=xgCnV--wf2k

The iterative Sfm alternating bundle adjustment method Break down the system into two phases SFM1: find pose phase SFM2: find model phase Initialize first guess of model The first guess is a flat model perpendicular to the image and is Zinit away e.g. Zinit =0.5 meters or any reasonable guess Iterative while( Err is not small SFM1: find pose phase SFM2: find model phase Measurement error(Err)or(model and pose stabilized) Pose estimation vo.a
The iterative SFM alternating bundle adjustment method • Break down the system into two phases: --SFM1: find pose phase --SFM2: find model phase • Initialize first guess of model – The first guess is a flat model perpendicular to the image and is Zinit away (e.g. Zinit = 0.5 meters or any reasonable guess) • Iterative while ( Err is not small ) • { – SFM1: find pose phase – SFM2: find model phase – Measurement error(Err) or(model and pose stabilized) • } Pose estimation V0.a 5

SFM1: find pose phase Pose estimation discussed in the last chapter Pose estimation vo.a 6
SFM1 : find pose phase Pose estimation discussed in the last chapter Pose estimation V0.a 6

SFM2: Model finding by the iterative method Similar to pose estimation In pose estimation model is known, pose is unknown Here model finding by the iterative method) Assume pose is known model is unknown The algorithms are similar Pose estimation vo.a
SFM2: Model finding by the iterative method • Similar to pose estimation. – In pose estimation: model is known, pose is unknown. – Here (Model finding by the iterative method) Assume pose is known, model is unknown. – The algorithms are similar. Pose estimation V0.a 7

From the pose estimation slides (chapter iv 10-pose estimation) Problem f= focal length. Assume for pose{RT}θ=[1a2@TT写 Formulation T, T,, T, are translations along,Y, Z axes repectively (@i, a )are rotation angles around X, Y, Z axes respectively, M,=x, y zI is the i model point(i =1, 2, N), *=u, v] the image point of P, rewrite(la),1(b) F1X1+n121+1321+T1 与X,+12+h32+F,(,M) -(2a) F21X1+2+r2321+72 v;h+r2y+n32+r8,(O,M) -(2b In this chapter Problem definition: There are t=1, 2, Iimage frames, and the object i=1, 2,.N features Asume the pose 0,=1.2.r=/91,92,B3, T,T2,T]i and image measurements xi. v,I are known SFM2 task: From the given image frames and pose 8, 12r Find Ml2N=x, Y ZP Pose estimation vo.a
Problem Formulation • Pose estimation V0.a 8 ( ) i N T i N i i i t , ,..,Γ T i,t i i t T t , ,..,Γ t v i i i i i i i i i u i i i i i i i i i i T i i i T th i i i i T M X Y Z θ x u v θ [ , , ,T ,T ,T ] g M b r X r Y r Z T r X r Y r Z T v f g M a r X r Y r Z T r X r Y r Z T u f P M X Y Z i x u v T T T f R,T θ T T T 1,2,.. 1,2,.. 1 2 1 2 1 2 3 1 2 3 , 31 32 33 3 21 22 23 2 , 31 32 33 3 11 12 13 1 1 2 3 1 2 3 1 2 3 1 2 3 Find SFM2 task :From the given image frames and pose and image measurements are known. Asume the pose , the object i 1,2,..., N features Problem definition :There are t 1,2,, image frames, and ---------------In this chapter -------------------------- ( , ) (2 ) ( , ) (2 ) the image point of , rewrite (1a),1(b) is the model point (i 1,2,, N), is , , are rotation angles around X,Y,Z axesrespectively, , , are translations along X,Y,Z axesrepectively, focal length.Assume for pose From the pose estimation slides(chapter iv10 - pose estimation): = = = = = = = = = = − − − − − − − − + + + + + + = = − − − − − − − − + + + + + + = = = = = =

Derivation for the model partial derivatives(note f= focal length en=g,(9,,,,T,T,x,,2)= Given u=81(,,,7,7,T,Xx,F,2)= D2z +T x+1+2+=2/-x++乙++n=若=厂 X1-3Y1+中21+7 r31 r321+73 n2X1+1+21+73 112 1 1≈1,2≈-g3,1≈2 R=r 1 31≈-n2,32≈内, Find I Find aX F1X1+F21+132+7 F1X1+F2x1+13z1+T r31X1+ry21+32z1+73 r,X+PY+、Z+T Y aX aX aX (xA)1 X ar aX aX o(x2) a(rr )f az ay ar Z aZ. aX OX Z X+r (z X (z) ZR ation vo.a
Derivation for the model partial derivatives (Note: f= focal length) • Pose estimation V0.a 9 ( ) ( ) ( ) ( ) ( ) = − + = − + = − + = + = = + + + + + + = − − − = − + + + − + + = + + + + + + = = = 2 1 1 3 1 1 1 2 3 1 2 3 1 1 1 3 1 3 2 3 3 3 1 1 1 2 1 3 1 2 1 3 1 3 2 3 1 3 2 3 3 2 1 2 2 2 3 1 1 1 2 1 3 2 1 3 3 2 1 3 1 3 2 3 3 3 1 1 1 2 1 3 1 1 2 3 1 2 3 1 1 Find . 1 1 1 R Given ( , , , , , , , , ) R i i R i R i R i R i R i R i R i R i R R i i R i R i R i R i R R i i R i R i R i i i i i i i i i i i i i i i R i R i i i i i i i i u i i i Z r X Z r f Z r f Z r X f Z f r X r Z f Z f X X X X Z Z Z f X Z f X X X Z f X Z X f X r X r Y r Z T r X r Y r Z T f X u X u r r r r r r r r r X Y Z T X Y Z T f Z X f r X r Y r Z T r X r Y r Z T f u g T T T X Y Z ( ) ( ) ( ) ( ) ( ) = − + = − + = − + = + = = + + + + + + = − − − + + + − + + = + + + + + + = = = 2 1 2 3 2 1 2 2 3 2 2 3 2 1 2 3 1 3 2 3 3 3 1 1 1 2 1 3 1 3 1 2 3 2 1 3 3 1 1 1 2 3 1 3 2 2 1 3 3 2 1 3 1 3 2 3 3 3 1 1 1 2 1 3 1 1 2 3 1 2 3 1 1 Find . , , 1 so 1, , Given ( , , , , , , , , ) R i i R i R i R i R i R i R i R i R i R R i i R i R i R i R i R R i i R i R i R i i i i i i i i i i i i i i i R i R i i i i i i i i u i i i Z r X Z r f Z r f Z r X f Z f r X r Z f Z f Y X X Y Z Z Z f Y Z f X X Y Z f Y Z X f Y r X r Y r Z T r X r Y r Z T f Y u Y u r r r r r r X Y Z T X Y Z T f Z X f r X r Y r Z T r X r Y r Z T f u g T T T X Y Z

CMSC5711: Exercise 11. 1: (Note: f= focal length) Given u;=gu(@1, P2,23,Ti, T2, T3,Xi,Y, Zi) F1X1+121+F1321+7 R f≈f B3Y+o2zi+ rX.tr.t +t 33 2X1+ny1+Z1+ Son1≈12≈-的,73 r31≈-n22≈,3 ≈1.Or 2 m的 R 33 21 Find Xtr.trz+t X R Xtr.trz R 33 +T, aZ aZ aZ Pose estimation vo.a
CMSC5711: Exercise11.1: (Note: f= focal length) • Pose estimation V0.a 10 ? Find 1 1 1 R , , 1, so 1, , Given ( , , , , , , , , ) 3 1 3 2 3 3 3 1 1 1 2 1 3 1 2 1 3 1 3 2 3 1 3 2 3 3 2 1 2 2 2 3 1 1 1 2 1 3 3 1 2 3 2 1 3 3 1 1 1 2 3 1 3 2 2 1 3 3 2 1 3 1 3 2 3 3 3 1 1 1 2 1 3 1 1 2 3 1 2 3 = = + + + + + + = − − − = − − − + + + − + + = + + + + + + = = = Z Z X f Z r X r Y r Z T r X r Y r Z T f Z u r r r r r r r r r r r r or r r r X Y Z T X Y Z T f Z X f r X r Y r Z T r X r Y r Z T f u g T T T X Y Z R i R i i i i i i i i i i i i i i R i R i i i i i i i i u i i i
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《大数据分析与数据挖掘 Big Data Analysis and Mining》课程教学资源(PPT课件讲稿)关联规则 Association Rule.pptx
- 《程序设计基础》课程教学资源:实验教学大纲.pdf
- 白城师范学院:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第二章 关系数据库(2.4 关系代数 2.5 关系演算 2.6 小结).ppt
- 安徽工贸职业技术学院:《计算机组装与维护》课程教学资源(PPT课件讲稿)项目五 微型计算机维护.ppt
- 曙光:并行程序设计简介(PPT讲座).ppt
- 《单片机原理与应用》课程教学资源(PPT课件讲稿)第7章 显示与开关/键盘输入及微型打印机接口设计.ppt
- 数据结构与算法(PPT课件讲稿)Data Structures and Algorithms.pptx
- 四川大学:《计算机操作系统 Operating System Principles》课程教学资源(PPT课件讲稿)第5章 死锁.ppt
- 四川大学:《Java面向对象编程》课程PPT教学课件(Object-Oriented Programming - Java)Unit 1.1 Java Applications 1.1.1 Applications in Java(熊运余).ppt
- 厦门大学:《大数据技术原理与应用》课程教学资源(PPT课件讲稿,2016)第8章 流计算.ppt
- Adaptive Dynamic Bipartite Graph Matching:A Reinforcement Learning Approach.pptx
- 中国科学技术大学:《网络安全协议》课程教学资源(PPT课件讲稿)第一章 网络安全综述 Network Security Protocols(薛开平).ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第二章 物理层.ppt
- Excel 2010高级使用技巧(PPT讲稿).ppt
- 《数据库原理》课程教学资源(PPT课件讲稿)第三章 关系数据库标准查询语言SQL.pps
- 河南中医药大学(河南中医学院):《计算机文化》课程教学资源(PPT课件讲稿)第一章 计算机网络概述(主讲:阮晓龙).pptx
- 《软件工程导论》课程教学资源(PPT课件讲稿)第9章 面向对象方法学.ppt
- 南京航空航天大学:《C++》课程电子教案(PPT课件讲稿)第3章 类的基础部分(主讲:陈哲).ppt
- 南京大学:使用失效数据来引导决定(PPT讲稿,计算机系:赵建华).ppt
- 南京大学:《Java语言程序设计》课程教学资源(PPT课件讲稿)第2章 Java语言语法基础.ppt
- 电子科技大学:《计算机操作系统》课程教学资源(PPT课件讲稿)第三章 处理机的调度和死锁.ppt
- 香港科技大学:Clustering(PPT讲稿).ppt
- 上海交通大学:TLS/SSL Security(PPT课件讲稿).pptx
- 山东大学计算机学院:《人机交互技术》课程教学资源(PPT课件讲稿)第7章 Web界面设计.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第三章 IAP15W4K58S4单片机的硬件结构.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)面向方面的编程 Aspect Oriented Programming.ppt
- 武昌首义学院:Word的基本操作与技巧(PPT讲稿,主讲:张旋子).pptx
- 《VB程序设计》课程教学资源(PPT课件讲稿)第八章 过程.pps
- 湖南生物机电职业技术学院:《电子商务概论》课程教学资源(PPT课件)第五章 网络信息搜索.ppt
- 《电子商务》课程教学资源(PPT课件讲稿)第十章 网络营销.pptx
- 广西外国语学院:《计算机网络》课程教学资源(PPT课件讲稿)第7章 传输层协议——TCP与UDP.ppt
- 九州大学(日本国立综合大学):烟花算法爆炸因子分析及改良(艺术工学府:余俊).pptx
- 图像视频编码与表达的理论与方法(PPT讲稿)图像压缩标准JPEG.ppt
- 中国科学技术大学:《计算机视觉》课程教学资源(PPT课件讲稿)第九章 单幅图像深度重建 Depthmap Reconstruction Based on Monocular cues.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第六章 应用层.ppt
- 《计算机导论》课程教学资源(PPT课件讲稿)第3章 计算机发展史和计算思维.pptx
- 武昌理工学院(武汉科技大学中南分校):Windows 2000/XP网络组建与系统管理(PPT课件讲稿,主讲:李燕).ppt
- 《网络编程实用教程(第三版)Network Application Programming》课程教学资源(PPT课件讲稿)第1章 概述.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第十章 下一代因特网.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)对象序列化和持久化 Object Serialization and Persistence.ppt