复旦大学:《数据库新技术》PPT教学课件_时空数据管理技术基础 Spatial Data Management

Spatial Data Management 2021/8/25
2021/8/25 1 Spatial Data Management

Outline Introduction of Spatial data Spatial Query Language Spatial Index structures Spatial Query Process and Optimization 2021/8/25
2021/8/25 2 Outline ◼ Introduction of Spatial data ◼ Spatial Query Language ◼ Spatial Index Structures ◼ Spatial Query Process and Optimization

Introduction of St atial data 2021/8/25
2021/8/25 3 Introduction of Spatial data

Types of spatial data Point data a Points in a multidimensional space Used when shape is not relevant (eg to represent location of detector when scale is small o E.g., Raster data such as satellite imagery, where each pixel stores a measured value o E.g., Feature vectors extracted from text 2021/8/25
2021/8/25 4 Types of Spatial Data ◼ Point Data ❑ Points in a multidimensional space ◼ Used when shape is not relevant (eg to represent location of detector) ◼ when scale is small ❑ E.g., Raster data such as satellite imagery, where each pixel stores a measured value ❑ E.g., Feature vectors extracted from text

Types of spatial data Polyline Data o A finite set of straight line segments such that each segment endpoint (called a vertex) is shared by exactly two segments, except that it may optionally have two endpoints(called the extreme points), which belong to only one segment a Polylines are classed as simple, non-simple or closed a) Simple polyline b)non-simple polyline c)closed polyline 2021/8/25
2021/8/25 5 Types of Spatial Data ◼ Polyline Data ❑ A finite set of straight line segments such that each segment endpoint (called a vertex) is shared by exactly two segments, except that it may optionally have two endpoints (called the extreme points), which belong to only one segment. ❑ Polylines are classed as simple, non-simple or closed. a) Simple polyline b) non-simple polyline c) closed polyline

Types of spatial data TWo-dimensional (polygons) o region of the plane bounded by a closed polyline a Objects have spatial extent with location and boundary Used whenever shape and/or size is also important o E.g., Buildings, roads, cities, admin districts a E.g., DB typically uses geometric approximations constructed using line segments, polygons, etc a)simple polygon b)convex polygon c)non-simple polygon d)region 2021/8/25
2021/8/25 6 Types of Spatial Data ◼ Two-dimensional (polygons) ❑ A region of the plane bounded by a closed polyline. ❑ Objects have spatial extent with location and boundary ◼ Used whenever shape and/or size is also important. ❑ E.g., Buildings, roads, cities, admin_districts ❑ E.g., DB typically uses geometric approximations constructed using line segments, polygons, etc.. a) simple polygon b) convex polygon c) non-simple polygon d) region

Types of spatial oi Spatial Range Queries o find all cities within 50 miles of madison a Query has associated region(location, boundary) a Answer includes overlapping or contained data regions Nearest-Neighbor Queries a Find the 10 cities nearest to madison a Results must be ordered by proximity Spatial Join Queries a find all cities near a lake a Expensive, join condition involves regions and proximity 2021/8/25
2021/8/25 7 Types of Spatial Queries ◼ Spatial Range Queries ❑ Find all cities within 50 miles of Madison ❑ Query has associated region (location, boundary) ❑ Answer includes overlapping or contained data regions ◼ Nearest-Neighbor Queries ❑ Find the 10 cities nearest to Madison ❑ Results must be ordered by proximity ◼ Spatial Join Queries ❑ Find all cities near a lake ❑ Expensive, join condition involves regions and proximity

Applications of Spatial data Geographic Information Systems(GIS) a E.g., ESRIS ArcInfo; OpenGIS Consortium a Geospatial information o all classes of spatial queries and data are common Computer-Aided Design/Manufacturing a Store spatial objects such as surface of airplane fuselage a Range queries and spatial join queries are common Multimedia Databases a Images video text etc. stored and retrieved by content a First converted to feature vector form high dimensionality a Nearest-neighbor queries are the most common 2021/8/25
2021/8/25 8 Applications of Spatial Data ◼ Geographic Information Systems (GIS) ❑ E.g., ESRI’s ArcInfo; OpenGIS Consortium ❑ Geospatial information ❑ All classes of spatial queries and data are common ◼ Computer-Aided Design/Manufacturing ❑ Store spatial objects such as surface of airplane fuselage ❑ Range queries and spatial join queries are common ◼ Multimedia Databases ❑ Images, video, text, etc. stored and retrieved by content ❑ First converted to feature vector form high dimensionality ❑ Nearest-neighbor queries are the most common

Operators on spatial components Operators similar to the Allen operators for time are required these must be overloaded to cope with different dimensions of spatial objects o Eg, touches(objectl, object2) Must be defined for all combinations of polyline/ polygon arguments b a C d a touches(a,b)=true touches(a, c)=false touches (c,d=true 2021/8/25
2021/8/25 9 Operators on spatial components ◼ Operators similar to the Allen operators for time are required; these must be overloaded to cope with different dimensions of spatial objects: ❑ Eg, touches(object1, object2) Must be defined for all combinations of polyline/ polygon arguments: a b a c c d touches(a,b)=true touches(a,c)=false touches(c,d)=true

Operators on spatial components As with temporal intervals the overlaps operator is particularly important a C overlaps(a,b)=true overlaps(a, c)=true 2021/8/25 10
2021/8/25 10 ◼ As with temporal intervals, the ‘overlaps’ operator is particularly important.. Operators on spatial components a b c a overlaps(a,b)=true overlaps(a,c)=true
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《数据库新技术》PPT教学课件_数据库技术介绍.ppt
- 复旦大学:《数据库新技术》PPT教学课件_查询处理与查询优化技术新进展.ppt
- 复旦大学:《数据库新技术》PPT教学课件_时空数据管理技术应用——移动对象.ppt
- 复旦大学:《数据库新技术》PPT教学课件_隐私保护技术 Privacy Preserving in Data Management and Publication.ppt
- 复旦大学:手机传感器应用APP-Phyphox使用简介(PDF版本).pdf
- 手机传感器应用APP-Phyphox使用简介(PPTX版本).pptx
- Python3 基础教程【完整版】PDF电子书.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第十二章 高级树结构.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班讲义)第十二章 高级树结构.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第十一章 高级线性表.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班讲义)第十一章 高级线性表.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第十章 索引技术(内存索引——红黑树).pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班讲义)第十章 索引技术(内存索引——红黑树).pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第十章 索引技术.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班讲义)第十章 索引技术.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第九章 检索.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班讲义)第九章 检索.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第八章 文件管理和外排序.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班讲义)第八章 文件管理和外排序.pdf
- 北京大学:《数据结构与算法》课程教学资源(实验班PPT课件)第七章 内排序.pdf
- 复旦大学:《数据库新技术》PPT教学课件_数据库管理系统技术基础.ppt
- 复旦大学:《商务智能》课程教学大纲(混合教学)商务数据分析 Business Intelligence.doc
- 复旦大学:《商务智能》课程教学讲座(商务数据分析)机器学习及其应用(主讲:赵卫东).pdf
- 复旦大学:《商务智能》课程学习资料(商务数据分析)基于项目沉浸式教学方法的数据分析类课程实践.pdf
- 复旦大学:《商务智能》课程学习资料(商务数据分析)数据分析类课程案例实验实训教学交流.pdf
- 复旦大学:《商务智能》课程学习资料(商务数据分析)一个课程内容专题(主题)的详细教学设计与实施方案.pdf
- 《计算机教育Computer Education》:基于项目实践的机器学习课程改革(复旦大学:赵卫东,袁雪茹).pdf
- 《计算机教育Computer Education》:数据分析类课程的技能培养方法探讨(复旦大学:赵卫东,蒲实).pdf
- 复旦大学《商务智能》课程参考资料:室内位置服务与商业智能.pdf
- 复旦大学:《商务智能》课程教学讲义(商务数据分析)电子推荐系统.pdf
- 《商务智能》课程学习资料:集成学习实用机器学习方法 Ensemble Learning.pdf
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)01 商务智能概论 Introduction to Business Intelligence.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)10 流程智能 Process Intelligence.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)11 大数据分析与应用 Big data analytics and applications.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)02 数据仓库 Data Warehouse.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)03 在线分析处理 Online Analytical Processing.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)04 数据挖掘基础(数据挖掘原理).ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)05 数据挖掘技术方法.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)06 数据挖掘应用.ppt
- 复旦大学:《商务智能》课程PPT教学课件(商务数据分析)07 Web挖掘基础.ppt