香港中文大学:《Probability and Statistics for Engineers》课程教学资源(PPT课件讲稿)Chapter 09 Classical Staistical Inference

ENGG2430A Probability and Statistics for Engineers lassical Instructor: Shengyu Zhang
Instructor: Shengyu Zhang

Preceding chapter: Bayesian inference Preceding chapter: Bayesian approach to inference a Unknown parameters are modeled as random variables a Work within a single, fully-specified probabilistic model a Compute posterior distribution by judicious application of Bayes rule
Preceding chapter: Bayesian inference ◼ Preceding chapter: Bayesian approach to inference. ❑ Unknown parameters are modeled as random variables. ❑ Work within a single, fully-specified probabilistic model. ❑ Compute posterior distribution by judicious application of Bayes' rule

This chapter: classical inference We view the unknown parameter 0 as a deterministic(not random! )but unknown quantit ity a The observation x is random and its distribution Px(x; 0)if X is discrete a x(x; 0)if X is continuous depends on the value of 0
This chapter: classical inference ◼ We view the unknown parameter 𝜃 as a deterministic (not random!) but unknown quantity. ◼ The observation 𝑋 is random and its distribution ❑ 𝑝𝑋 𝑥; 𝜃 if 𝑋 is discrete ❑ 𝑓𝑋 𝑥; 𝜃 if 𝑋 is continuous depends on the value of 𝜃

Classical inference Deal simultaneously with multiple candidate models, one model for each possible value of a"good "hypothesis testing or estimation procedure will be one that possesses certain desirable properties under every candidate model o i.e. for every possible value of 0
Classical inference ◼ Deal simultaneously with multiple candidate models, one model for each possible value of 𝜃. ◼ A ''good" hypothesis testing or estimation procedure will be one that possesses certain desirable properties under every candidate model. ❑ i.e. for every possible value of 𝜃

a Bayesian Prior pe HObservation H Posterior Pe(I X=r); Point Estimates i Process Calculation E rror Analysis Conditional et Pxe Classical Px(; I Point estimates Observation Hypothesis selection P rocess Confidence intervals i etc
◼ Bayesian: ◼ Classical:

Notation Our notation will generally indicate the dependence of probabilities and expected values on e For example, we will denote by egl(x)i the expected value of a random variable h(X)as a function of e Similarly, we will use the notation Pe(A)to denote the probability of an event A
Notation ◼ Our notation will generally indicate the dependence of probabilities and expected values on 𝜃. ◼ For example, we will denote by 𝐸𝜃 ℎ 𝑋 the expected value of a random variable ℎ 𝑋 as a function of 𝜃. ◼ Similarly, we will use the notation 𝑃𝜃 𝐴 to denote the probability of an event 𝐴

Content a Classical parameter estimation Linear regression Binary Hypothesis Testing Significance Testing
Content ◼ Classical Parameter Estimation ◼ Linear Regression ◼ Binary Hypothesis Testing ◼ Significance Testing

Given observationsⅩ=(1,…,!n),an estimator is a random variable of the form 0=g(X), for some function g Note that since the distribution of X depends on 0 the same is true for the distribution of o We use the term estimate to refer to an actual realized value of e
◼ Given observations 𝑋 = 𝑋1,… ,𝑋𝑛 , an estimator is a random variable of the form Θ = 𝑔 𝑋 , for some function 𝑔. ◼ Note that since the distribution of 𝑋 depends on 𝜃, the same is true for the distribution of Θ . ◼ We use the term estimate to refer to an actual realized value of Θ

Sometimes, particularly when we are interested in the role of the number of observations n, we use the notation o for an estimator a It is then also appropriate to view On as a sequence of estimators o One for each value of n a The mean and variance of e are denoted Een and vare on respectively a We sometimes drop this subscript 0 when the context is clear
◼ Sometimes, particularly when we are interested in the role of the number of observations 𝑛, we use the notation Θ𝑛 for an estimator. ◼ It is then also appropriate to view Θ𝑛 as a sequence of estimators. ❑ One for each value of 𝑛. ◼ The mean and variance of Θ 𝑛 are denoted 𝐸𝜃 Θ𝑛 and 𝑣𝑎𝑟𝜃 Θ𝑛 , respectively. ❑ We sometimes drop this subscript 𝜃 when the context is clear

Terminology regarding estimators Estimator:o a function of n observations for an(X1,., Xn)whose distribution depends on日. Estimation error: 0n=0n -8 Bias of the estimator: be(0n=Ee0n-0,is the expected value of the estimation error
Terminology regarding estimators ◼ Estimator: Θ 𝑛, a function of 𝑛 observations for an 𝑋1,… , 𝑋𝑛 whose distribution depends on 𝜃. ◼ Estimation error: Θ෩𝑛 = Θ 𝑛 − 𝜃. ◼ Bias of the estimator: 𝑏𝜃 Θ 𝑛 = 𝐸𝜃 Θ 𝑛 − 𝜃, is the expected value of the estimation error
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《挖掘海量数据集 Mining Massive Datasets》课程教学资源(PPT讲稿)Lecture 07 链接分析 Link Analysis.ppt
- 《计算机仿真技术》课程电子教案(PPT教学课件)第一章 绪论.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第6章 IP路由.ppt
- 《计算机原理及应用》课程教学资源(PPT课件讲稿)第8章 单片机的存储器的扩展.ppt
- 《算法设计》课程教学资源(PPT课件讲稿)Lecture 6 Graph Traversal.ppt
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 3 Data Transmission.ppt
- 南京大学:Decidability、Complexity(P、NP、NPC)、Reduce(P NP NPC).pptx
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第四章 电子表格系统Excel 2003.ppt
- 西安电子科技大学:《信息系统安全》课程教学资源(PPT课件讲稿)第三章 信息安全保障体系、第四章 物理安全.ppt
- 《计算机网络》课程电子教案(PPT课件讲稿)第2章 数据通信与广域网技术.ppt
- 《计算机网络与互联网 Computer Networks and Internets》课程电子教案(PPT课件讲稿)Part IV 局域网 Local Area Networks(LANs).ppt
- 《人工智能导论》课程教学资源(PPT课件讲稿)群智能(Swarm Intelligence).ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第六章 中断 §6.1 中断的概念 §6.2 单片机的中断系统及其管理.ppt
- 3D computer vision techniques v.4b2 1.ppt
- 上海交通大学:《计算机控制技术》课程教学资源(PPT课件)第一章 计算机控制系统概述 Computer Control Technology.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第一章 概述.ppt
- 《ARM原理与设计》课程教学资源(PPT课件讲稿)Lecture 04 Cortex M3指令集.pptx
- 西安电子科技大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第八章 中断系统与可编程中断控制器8259A.pptx
- 《软件工程》课程教学资源(PPT课件讲稿)需求分析.ppt
- 《Data Warehousing & Data Mining》课程教学资源(PPT讲稿)Ch 2 Discovering Association Rules.ppt
- 西安交通大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第6章 数字量输入输出接口(主讲:桂小林).ppt
- 《软件工程》课程教学资源(PPT课件)Lecture 6 设计概念和原则 Design Concepts and Principles.ppt
- 《网络编程实用教程》课程教学资源(PPT课件讲稿)第2章 套接字网络编程基础.ppt
- 《现代操作系统 Modern Operating Systems》课程教学资源(PPT课件讲稿,Third Edition)Chapter 3 内存管理 Memory Management.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第四章 串.ppt
- 东北大学:《计算机图形学》课程教学资源(PPT课件讲稿,主讲:闻时光).ppt
- 上海交通大学:超立方体 Hypercube(PPT讲稿)Low-Diameter Architectures.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第五章 多维数组与广义表.ppt
- 西南交通大学:《网络性能评估与测试 Network Performance Evaluation and Testing》(PPT课件讲稿)第2讲 网络测试技术基础(主讲:张新有).ppt
- 《Photoshop CS教程》教学资源(PPT课件)第7章 编辑文字.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)语法制导的翻译(Syntax-Directed Translation).pptx
- 电子科技大学:《密码理论》课程教学资源(PPT课件讲稿)第2章 流密码.ppt
- 搜索引擎技术(PPT讲稿)Web Spam.ppt
- 四川大学:《计算机操作系统 Operating System Principles》课程教学资源(PPT课件讲稿)第1章 导论(主讲:段磊).ppt
- 赣南师范大学:《计算机网络原理》课程教学资源(PPT课件讲稿)第七章 网络层.ppt
- 《人工智能》课程电子教案(PPT课件讲稿)第9章 机器学习与知识发现.ppt
- 《数字图像处理》课程教学资源(PPT课件讲稿)第7章 图像分割.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第五章 语法制导的翻译 5.1 语法制导的定义 5.2 S属性定义的自下而上计算.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 5 互斥与同步(Mutual Exclusion and Synchronization)5.3 Semaphores.ppt
- 淮阴工学院:《数据库原理》课程教学资源(PPT课件讲稿)第2章 数据库系统结构.ppt