南京大学:Decidability、Complexity(P、NP、NPC)、Reduce(P NP NPC)

大房 NANJING UNIVERSITY Decidability The diagonalization method The halting problem is undecidable
The diagonalization method The halting problem is undecidable Decidability

Undecidability decidable all languages reqular languages context free languages RE decidable cre c all languages our goal. prove these containments proper
Undecidability decidable RE all languages our goal: prove these containments proper regular languages context free languages all languages decidable RE

A Countable and Uncountable Sets the natural numbers n=(1, 2, 3, .. are countable Definition a set s is countable if it is finite. or it is infinite and there is a bijection f:N→S
Countable and Uncountable Sets ◼ the natural numbers N = {1,2,3,…} are countable ◼ Definition: a set S is countable if it is finite, or it is infinite and there is a bijection f: N → S

Example Countable set The positive rational numbers Q=m/n m, nEN) are countable Proof 11/21/3141/516 212/22/3242/526 3/13/23/33/43/536 4/14/24/3444/54/6 5/1
Example Countable Set ◼ The positive rational numbers Q = {m/n | m, n N } are countable. ◼ Proof: 1/1 1/2 1/3 1/4 1/5 1/6 … 2/1 2/2 2/3 2/4 2/5 2/6 … 3/1 3/2 3/3 3/4 3/5 3/6 … 4/1 4/2 4/3 4/4 4/5 4/6 … 5/1 … …

A Example Uncountable Set Theorem: the real numbers r are not countable(they are uncountable) How do you prove such a statement? o assume countable(so there exists bijection f) o derive contradiction(some element not mapped to by f o technique is called diagonalization( Cantor)
Example Uncountable Set Theorem: the real numbers R are NOT countable (they are “uncountable”). ◼ How do you prove such a statement? assume countable (so there exists bijection f) derive contradiction (some element not mapped to by f) technique is called diagonalization (Cantor)

A Example Uncountable Set Proof o suppose R is countable o list r according to the bijection f: n f(n 13.14159 25.55555. 30.12345 40.50000
Example Uncountable Set ◼ Proof: suppose R is countable list R according to the bijection f: n f(n) _ 1 3.14159… 2 5.55555… 3 0.12345… 4 0.50000… …

A Example Uncountable Set Proof o suppose R is countable o list r according to the bijection f: set X=0. a1a2a3a4 13.14159 where digit a; t ith digit after decimal 25.55555 point of f((not 0, 9) eg.x=02312. 30.12345 x cannot be in the list 40.50000
Example Uncountable Set ◼ Proof: suppose R is countable list R according to the bijection f: n f(n) _ 1 3.14159… 2 5.55555… 3 0.12345… 4 0.50000… … set x = 0.a1a2a3a4… where digit ai ≠ i th digit after decimal point of f(i) (not 0, 9) e.g. x = 0.2312… x cannot be in the list!

Non-RE Languages Theorem: there exist languages that are not Recursively enumerable Proof outline o the set of all tms is countable o the set of all languages is uncountable o the function L: TMS)languages cannot be onto
Non-RE Languages Theorem: there exist languages that are not Recursively Enumerable. Proof outline: the set of all TMs is countable the set of all languages is uncountable the function L: {TMs} →{languages} cannot be onto

Non-RE Languages Lemma the set of all tms is countable Proof o the set of all strings 2* is countable for a finite alphabet 2. With only finitely many strings of each length, we may form a list of 2* by writing down all strings of length 0, all strings of length 1, all strings of length 2, etc o each tM M can be described by a finite-length string s o Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs
Non-RE Languages ◼ Lemma: the set of all TMs is countable. ◼ Proof: the set of all strings * is countable, for a finite alphabet . With only finitely many strings of each length, we may form a list of * by writing down all strings of length 0, all strings of length 1, all strings of length 2, etc. each TM M can be described by a finite-length string s Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs

Non-RE Languages Lemma: the set of all languages is uncountable Proof o fix an enumeration of all strings S,, S2, S3 (for example, lexicographic order) o a language L is described by its characteristic vector xu whose ith element is0 if s: is not in l and 1 if s; is in l
Non-RE Languages ◼ Lemma: the set of all languages is uncountable ◼ Proof: fix an enumeration of all strings s1 , s2 , s3 , … (for example, lexicographic order) a language L is described by its characteristic vector L whose ith element is 0 if si is not in L and 1 if si is in L
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第四章 电子表格系统Excel 2003.ppt
- 西安电子科技大学:《信息系统安全》课程教学资源(PPT课件讲稿)第三章 信息安全保障体系、第四章 物理安全.ppt
- 《计算机网络》课程电子教案(PPT课件讲稿)第2章 数据通信与广域网技术.ppt
- 《计算机网络与互联网 Computer Networks and Internets》课程电子教案(PPT课件讲稿)Part IV 局域网 Local Area Networks(LANs).ppt
- 《人工智能导论》课程教学资源(PPT课件讲稿)群智能(Swarm Intelligence).ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第六章 中断 §6.1 中断的概念 §6.2 单片机的中断系统及其管理.ppt
- 3D computer vision techniques v.4b2 1.ppt
- 上海交通大学:《计算机控制技术》课程教学资源(PPT课件)第一章 计算机控制系统概述 Computer Control Technology.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第一章 概述.ppt
- 《ARM原理与设计》课程教学资源(PPT课件讲稿)Lecture 04 Cortex M3指令集.pptx
- 西安电子科技大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第八章 中断系统与可编程中断控制器8259A.pptx
- 《软件工程》课程教学资源(PPT课件讲稿)需求分析.ppt
- 《Data Warehousing & Data Mining》课程教学资源(PPT讲稿)Ch 2 Discovering Association Rules.ppt
- Microsoft .NET(PPT课件讲稿)Being Objects and A Glimpse into Coding.pptx
- 《PHP程序设计》教学资源(PPT课件讲稿)项目二 网站用户中心.ppt
- 《信息技术基础》课程教学资源(PPT课件)信息技术基础知识的内容.ppt
- 广西外国语学院:《计算机网络》课程教学资源(PPT课件讲稿)第9章 DHCP协议(任课教师:卢豫开).ppt
- 《机器学习》课程教学资源(PPT课件讲稿)第十二章 计算学习理论 Machine Learning.pptx
- 西安交通大学:《网络与信息安全》课程PPT教学课件(网络入侵与防范)第四章 口令破解与防御技术.ppt
- 上海交通大学:《Multicore Architecture and Parallel Computing》课程教学资源(PPT课件讲稿)Lecture 9 MapReduce.pptx
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 3 Data Transmission.ppt
- 《算法设计》课程教学资源(PPT课件讲稿)Lecture 6 Graph Traversal.ppt
- 《计算机原理及应用》课程教学资源(PPT课件讲稿)第8章 单片机的存储器的扩展.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第6章 IP路由.ppt
- 《计算机仿真技术》课程电子教案(PPT教学课件)第一章 绪论.ppt
- 上海交通大学:《挖掘海量数据集 Mining Massive Datasets》课程教学资源(PPT讲稿)Lecture 07 链接分析 Link Analysis.ppt
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(PPT课件讲稿)Chapter 09 Classical Staistical Inference.pptx
- 西安交通大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第6章 数字量输入输出接口(主讲:桂小林).ppt
- 《软件工程》课程教学资源(PPT课件)Lecture 6 设计概念和原则 Design Concepts and Principles.ppt
- 《网络编程实用教程》课程教学资源(PPT课件讲稿)第2章 套接字网络编程基础.ppt
- 《现代操作系统 Modern Operating Systems》课程教学资源(PPT课件讲稿,Third Edition)Chapter 3 内存管理 Memory Management.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第四章 串.ppt
- 东北大学:《计算机图形学》课程教学资源(PPT课件讲稿,主讲:闻时光).ppt
- 上海交通大学:超立方体 Hypercube(PPT讲稿)Low-Diameter Architectures.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第五章 多维数组与广义表.ppt
- 西南交通大学:《网络性能评估与测试 Network Performance Evaluation and Testing》(PPT课件讲稿)第2讲 网络测试技术基础(主讲:张新有).ppt
- 《Photoshop CS教程》教学资源(PPT课件)第7章 编辑文字.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)语法制导的翻译(Syntax-Directed Translation).pptx
- 电子科技大学:《密码理论》课程教学资源(PPT课件讲稿)第2章 流密码.ppt
- 搜索引擎技术(PPT讲稿)Web Spam.ppt