上海交通大学:超立方体 Hypercube(PPT讲稿)Low-Diameter Architectures

Hypercube Fa2010 Parallel Processing, Low-Diameter Architectures Slide 1
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 1 Hypercube

LOW-Diameter Architectures Study the hypercube and related interconnection schemes Prime example of low-diameter(logarithmic) networks Theoretical properties, realizability, and scalability Complete our view of the sea of interconnection nets Fa2010 Parallel Processing, Low-Diameter Architectures Slide 3
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 3 Low-Diameter Architectures Study the hypercube and related interconnection schemes: • Prime example of low-diameter (logarithmic) networks • Theoretical properties, realizability, and scalability • Complete our view of the “sea of interconnection nets

Hypercubes and Their algorithms Study the hypercube and its topologicallalgorithmic properties Develop simple hypercube algorithms(more in Ch. 14) Learn about embeddings and their usefulness Topics in This Lecture 13.1 Definition and Main Properties 13.2 Embeddings and Their Usefulness 13.3 Embedding of Arrays and Trees 14.5 Broadcasting in Hypercube 14.6 Adaptive routing in Hypercube 15 Inverting a Lower-Triangular Matrix Fa2010 Parallel Processing, Low-Diameter Architectures Slide 4
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 4 Hypercubes and Their Algorithms Study the hypercube and its topological/algorithmic properties: • Develop simple hypercube algorithms (more in Ch. 14) • Learn about embeddings and their usefulness Topics in This Lecture 13.1 Definition and Main Properties 13.2 Embeddings and Their Usefulness 13.3 Embedding of Arrays and Trees 14.5 Broadcasting in Hypercube 14.6 Adaptive routing in Hypercube 15 Inverting a Lower-Triangular Matrix

13.1 Definition and main properties P P P Intermediate architectures logarithmic or sublogarithmic diameter P Begin studying networks that are intermediate between diameter -1 complete network and diameter-p12 mesh Sublogarithmic diameter Superlogarithmic diameter 2 log n/loglog n log n n/2 n Complete PDN Star Binary tree Torus Ring Linear network pancake hypercube arr ray Fa2010 Parallel Processing, Low-Diameter Architectures Slide 5
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 5 13.1 Definition and Main Properties P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 0 P P P P P P P P P 0 1 2 3 4 5 6 7 8 Intermediate architectures: logarithmic or sublogarithmic diameter Begin studying networks that are intermediate between diameter-1 complete network and diameter-p 1/2 mesh Complete network 1 2 log n / log log n log n n n/2 n − 1 Sublogarithmic diameter Superlogarithmic diameter PDN Star, pancake Binary tree, hypercube Torus Ring Linear array

Hypercube and Its History Binary tree has logarithmic diameter, but small bisection Hypercube has a much larger bisection Hypercube is a mesh with the maximum possible number of dimensions 2×2×2 2 9= log p We saw that increasing the number of dimensions made it harder to design and visualize algorithms for the mesh Oddly, at the extreme of log2 p dimensions things become simple again Brief history of the hypercube(binary g-cube)architecture Concept developed: early 1960s [Squi63 Direct(single-stage)and indirect(multistage)versions: mid 1970s Initial proposals[Peas771, [Sull77]included no hardware Caltech's 64-node Cosmic Cube: early 1980s [ Seit85 Introduced an elegant solution to routing(wormhole switching) Several commercial machines mid to late 1980s Intel PSc (personal supercomputer), CM-2, nCUBE(Section 22. 3) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 6
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 6 Hypercube and Its History Binary tree has logarithmic diameter, but small bisection Hypercube has a much larger bisection Hypercube is a mesh with the maximum possible number of dimensions 2 2 2 . . . 2 ⎯ q = log2 p ⎯→ We saw that increasing the number of dimensions made it harder to design and visualize algorithms for the mesh Oddly, at the extreme of log2 p dimensions, things become simple again! Brief history of the hypercube (binary q-cube) architecture Concept developed: early 1960s [Squi63] Direct (single-stage) and indirect (multistage) versions: mid 1970s Initial proposals [Peas77], [Sull77] included no hardware Caltech’s 64-node Cosmic Cube: early 1980s [Seit85] Introduced an elegant solution to routing (wormhole switching) Several commercial machines: mid to late 1980s Intel PSC (personal supercomputer), CM-2, nCUBE (Section 22.3)

Basic Definitions 0 Hypercube is generic term;(a)Binary 1-cube (b)Binary 2-cube 3-cube, 4-cube,., g-cube built of two built of tw binary o-cubes binary 1-cubes, labeled o and 1 labeled 0 and 1 In specifIc cases Fig.13.1 The recursive structure of binary hypercubes (c)Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1 Parameters: 2q 0 B=0/2=291 D=g=log2p d=g= log2p (d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1 Fa2010 Parallel Processing, Low-Diameter Architectures Slide 7
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 7 Basic Definitions Hypercube is generic term; 3-cube, 4-cube, . . . , q-cube in specific cases 0 1 00 01 10 11 (a) Binary 1-cube, built of two binary 0-cubes, labeled 0 and 1 (b) Binary 2-cube, built of two binary 1-cubes, labeled 0 and 1 0 1 (c) Binary 3-cube, built of two binary 2-cubes, labeled 0 and 1 0 000 001 010 011 100 101 110 111 1 000 001 010 011 100 101 110 111 (d) Binary 4-cube, built of two binary 3-cubes, labeled 0 and 1 0 1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Fig. 13.1 The recursive structure of binary hypercubes. Parameters: p = 2q B = p/2 = 2q–1 D = q = log2p d = q = log2p

The 64-node Hypercube Only sample wraparound links are shown to avoid clutter amorphic to the4×4×4 3D torus (each has 64×6/2 links) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 8
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 8 Only sample wraparound links are shown to avoid clutter The 64-Node Hypercube Isomorphic to the 4 4 4 3D torus (each has 64 6/2 links)

Neighbors of a Node in a Hypercube q-14q-2…X2X1X iD of node x q-1q2…x2X1x0 dimension-0 neighbor; No(X) q-1q2…X2X1 Xo dimension-1 neighbor N,X) The neighbors of node x ⅩX1X q dimension-(g-1)neighbor; Na-1(x) 0100 Dim o Nodes whose labels differ in k bits Dim 3 (at Hamming distance k) connected Dim 2 1100 by shortest path of length k 0000 Dim 110 Both node-and edge-symmetric l111 Strengths: symmetry, log diameter, 0110 and linear bisection width 0111 Weakness: poor scalability 1010101 Fa2010 Parallel Processing, Low-Diameter Architectures Slide 9
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 9 Neighbors of a Node in a Hypercube xq–1xq–2 . . . x2x1x0 ID of node x xq–1xq–2 . . . x2x1x0 dimension-0 neighbor; N0 (x) xq–1xq–2 . . . x2x1 x0 dimension-1 neighbor; N1 (x) . . . . . . xq–1 xq–2 . . . x2x1x0 dimension-(q–1) neighbor; Nq–1 (x) The q neighbors of node x Nodes whose labels differ in k bits (at Hamming distance k) connected by shortest path of length k Both node- and edge-symmetric Strengths: symmetry, log diameter, and linear bisection width Weakness: poor scalability Dim 0 Dim 1 Dim 2 Dim 3 0100 0101 0110 0000 1100 1101 1111 0111 0011 x 1011 0010 1010 x

13.2 Embeddings and Their Usefulness Dilation Congestion 5Fig.132 \b Load tactor= Embedding a even-node 0 2 binary tree f into 2D 3」|4 meshes of Various sizes Dilation 2 Dilation Congestion =2 Congestion =2 Load factor Load factor s b「 Expansion: tio of the number of e nodes(9/7,8/7 3 4 5 and 4/7 here) Dilation: Longest path onto which an edge is mapped (routing slowdown) Congestion Max number of edges mapped onto one edge(contention slowdown) Load factor: Max number of nodes mapped onto one node(processing slowdown) Fa2010 Parallel Processing, Low-Diameter Architectures Slide 10
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 10 Dilation: Longest path onto which an edge is mapped (routing slowdown) Congestion: Max number of edges mapped onto one edge (contention slowdown) Load factor: Max number of nodes mapped onto one node (processing slowdown) 13.2 Embeddings and Their Usefulness Fig. 13.2 Embedding a seven-node binary tree into 2D meshes of various sizes. 0 2 3 4 1 5 6 0 2 3 4 1 6 5 0,1 2 4 3 6 5 6 1 0 3,4 2,5 a b c d e f a b c d e f a b c d e f b c, d f Dilation = 1 Congestion = 1 Load factor = 1 Dilation = 2 Congestion = 2 Load factor = 1 Dilation = 1 Congestion = 2 Load factor = 2 Expansion: ratio of the number of nodes (9/7, 8/7, and 4/7 here)

13. 3 Embedding of Arrays and Trees g-1)-bit Gray code ○ 0000...000 0000...001 0000...011 O No?(Nfx) 0100...000 (q? l-cube 0 ( q? l-cube 1:100...000 Fig. 13.3 Hamiltonian cycle in the g-cube Alternate inductive proof: Hamiltonicity of the q-cube 000...011 is equivalent to the existence of a g-bit Gray code 1000...010 000...000 Basis: q-bit Gray code beginning with the all-Os codeword (9-1)-bit and ending with 10q-1 exists for g= 2: 00, 01, 11, 10 Gray code In reverse Fa2010 Parallel Processing, Low-Diameter Architectures Slide 11
Fall 2010 Parallel Processing, Low-Diameter Architectures Slide 11 13.3 Embedding of Arrays and Trees Alternate inductive proof: Hamiltonicity of the q-cube is equivalent to the existence of a q-bit Gray code Fig. 13.3 Hamiltonian cycle in the q-cube. (q ?1)-cube 0 x (q ?1)-cube 1 N (x) k N (x) q? N (N (x)) q? k (q – 1)-bit Gray code 000 . . . 000 000 . . . 001 000 . . . 011 . . . 100 . . . 000 0 0 0 0 1 1 1 1 100 . . . 000 . . . 000 . . . 011 000 . . . 010 000 . . . 000 (q – 1)-bit Gray code in reverse Basis: q-bit Gray code beginning with the all-0s codeword and ending with 10q–1 exists for q = 2: 00, 01, 11, 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东北大学:《计算机图形学》课程教学资源(PPT课件讲稿,主讲:闻时光).ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第四章 串.ppt
- 《现代操作系统 Modern Operating Systems》课程教学资源(PPT课件讲稿,Third Edition)Chapter 3 内存管理 Memory Management.ppt
- 《网络编程实用教程》课程教学资源(PPT课件讲稿)第2章 套接字网络编程基础.ppt
- 《软件工程》课程教学资源(PPT课件)Lecture 6 设计概念和原则 Design Concepts and Principles.ppt
- 西安交通大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第6章 数字量输入输出接口(主讲:桂小林).ppt
- 香港中文大学:《Probability and Statistics for Engineers》课程教学资源(PPT课件讲稿)Chapter 09 Classical Staistical Inference.pptx
- 上海交通大学:《挖掘海量数据集 Mining Massive Datasets》课程教学资源(PPT讲稿)Lecture 07 链接分析 Link Analysis.ppt
- 《计算机仿真技术》课程电子教案(PPT教学课件)第一章 绪论.ppt
- 《计算机网络》课程教学资源(PPT课件讲稿)第6章 IP路由.ppt
- 《计算机原理及应用》课程教学资源(PPT课件讲稿)第8章 单片机的存储器的扩展.ppt
- 《算法设计》课程教学资源(PPT课件讲稿)Lecture 6 Graph Traversal.ppt
- 香港浸会大学:《Data Communications and Networking》课程教学资源(PPT讲稿)Chapter 3 Data Transmission.ppt
- 南京大学:Decidability、Complexity(P、NP、NPC)、Reduce(P NP NPC).pptx
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第四章 电子表格系统Excel 2003.ppt
- 西安电子科技大学:《信息系统安全》课程教学资源(PPT课件讲稿)第三章 信息安全保障体系、第四章 物理安全.ppt
- 《计算机网络》课程电子教案(PPT课件讲稿)第2章 数据通信与广域网技术.ppt
- 《计算机网络与互联网 Computer Networks and Internets》课程电子教案(PPT课件讲稿)Part IV 局域网 Local Area Networks(LANs).ppt
- 《人工智能导论》课程教学资源(PPT课件讲稿)群智能(Swarm Intelligence).ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第六章 中断 §6.1 中断的概念 §6.2 单片机的中断系统及其管理.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第五章 多维数组与广义表.ppt
- 西南交通大学:《网络性能评估与测试 Network Performance Evaluation and Testing》(PPT课件讲稿)第2讲 网络测试技术基础(主讲:张新有).ppt
- 《Photoshop CS教程》教学资源(PPT课件)第7章 编辑文字.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)语法制导的翻译(Syntax-Directed Translation).pptx
- 电子科技大学:《密码理论》课程教学资源(PPT课件讲稿)第2章 流密码.ppt
- 搜索引擎技术(PPT讲稿)Web Spam.ppt
- 四川大学:《计算机操作系统 Operating System Principles》课程教学资源(PPT课件讲稿)第1章 导论(主讲:段磊).ppt
- 赣南师范大学:《计算机网络原理》课程教学资源(PPT课件讲稿)第七章 网络层.ppt
- 《人工智能》课程电子教案(PPT课件讲稿)第9章 机器学习与知识发现.ppt
- 《数字图像处理》课程教学资源(PPT课件讲稿)第7章 图像分割.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第五章 语法制导的翻译 5.1 语法制导的定义 5.2 S属性定义的自下而上计算.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 5 互斥与同步(Mutual Exclusion and Synchronization)5.3 Semaphores.ppt
- 淮阴工学院:《数据库原理》课程教学资源(PPT课件讲稿)第2章 数据库系统结构.ppt
- 苏州大学:文档评分与向量空间模型(PPT讲稿).ppt
- 清华大学:Computational Models for Social Network Analysis(PPT讲稿)mining big social networks(Part III:Group and Structure).pptx
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)第一章 计算机网络安全概述2/2(主讲:肖明军).ppt
- 《计算机硬件基础》课程教学资源(PPT课件讲稿)第六章 汇编语言及其程序设计.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第四章 指令系统及汇编语言程序设计(4.9-4.11).ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第三章 控制语句.ppt
- 《机器学习》课程教学资源(PPT课件讲稿)第十三章 半监督学习.pptx