南京航空航天大学:Personal Simulation Workshop(A Simulation Tool for Aerodynamic Analysis and Design)

Personal Simulation Workshop a Simulation Tool for aerodynamic Analysis and design …………… e
Personal Simulation Workshop A Simulation Tool for Aerodynamic Analysis and Design

Personal Simulation Workshop(PSW): OAK Digital Wing Tunnel(DWT) PSW is a streamline-body design and analysis package for the PC, comprising programs for surface definition, flow analysis, and data visualization Its three principal elements Loftsman geometric layout of external lines Cmarc flow analysis Postmark interpretation of results
Personal Simulation Workshop (PSW): Digital Wing Tunnel (DWT) • PSW is a streamline-body design and analysis package for the PC, comprising programs for surface definition, flow analysis, and data visualization. • Its three principal elements : – Loftsman • geometric layout of external lines – Cmarc • flow analysis – Postmarc • interpretation of results

Introduction to cmarc An inviscid fluid flow analysis code of the type known as a low- order panel method It is an enhanced version of nasa's pmarc-12 With modern desktop computers, dense meshes of 5,000 or more panels for a half-model can be analyzed in minutes Although the basic analysis is inviscid, a subsequent boundary layer analysis may be performed along individual streamlines or over the entire surface Provided that flow is attached and that large areas of crossflow do not appear, the boundary layer analysis is quite accurate Only the frictional and lift-induced components of drag can be computed, however; an inviscid analysis is inherently unable to calculate pressure or "form"drag Written in ANSI C
Introduction to Cmarc • An inviscid fluid flow analysis code of the type known as a loworder panel method. – It is an enhanced version of NASA's Pmarc-12 • With modern desktop computers, dense meshes of 5,000 or more panels for a half-model can be analyzed in minutes. • Although the basic analysis is inviscid, a subsequent boundarylayer analysis may be performed along individual streamlines or over the entire surface. – Provided that flow is attached and that large areas of crossflow do not appear, the boundary layer analysis is quite accurate. • Only the frictional and lift-induced components of drag can be computed, however; an inviscid analysis is inherently unable to calculate pressure or "form" drag. • Written in ANSI C

Introduction to cmarc Interface ..Cmarc V5.0 File selection Interactive Analysis Converged in 8 iterations Distributing doublet Strengths on Wake Panels Output Root Name: C: PSW\duela Calculating Velocities, Cp and Mach Numbers Stepping the wake Run Options Override Time Steps Override- v No override Number of time steps: Start Analysis D Run geometry and initial wake Time step size Time Stepping■■■■■■■■■■ Run geometry and stepped wake F Run added mass calculation only Save both FMT and BIN plot files Lower Higher Continue despite failure to converge AOA and Yaw Override Echo input to ECO file for debugging r write Postmarc data in ASCl fermat Multiple Analyses 厂 Yaw override C \PSW\duela. in C: \PSw \duela 10 blank D blank 厂 Set iteration limit C \PSW\duela in C \PSw \duela 10 blank 0 blank C: \PSW\duela. in C: \PSw\duela 1 0 blank 0 blank Remo Precision厂 Run on disk or井 columns in RAM #t or Save」 厂 Double Save Initial Solution Load r Use Initial Solution C:\PSW\duela.sol Submit after 7: 14:09 PM 彐 117/2002
Introduction to Cmarc Interface

飞 Digital Find Tunnel-[Po夏ARC.I ed File Edit view Window Analysis Help x 口囝回叫当? POMARC WING BODY COMBINATION TEST CASE FROM LOFTSMAN &biNP2 LSTINP=2 LSTOUT=0, LSTFRQ=0. LENRUN=0, LPLTYP=0. &END &BINP3 LSTGEO=O, LSTNAB=0, LSTWAK-0, LSTCP=0 &END &BINPA MAXIT=200, SOLRES=0.0005 &END &BINP5 NTSTPS=3, DTSTEP=300 &END &BINP6 RSYM=0.0, RGPR=0.0, RFF=5.0, RCoRES=0.050, RCOREW=0. 050, &END &BINP7 VINF=1.0. VSOUND=13392.0 &BINP8 ALDEG=4.0, YAWDEG=0.0, PHidoT=0.0, THEdOT=0.0, PSidOT=0.0, &END &BINP8A PHIMAX=0. 0 THEMAX 0.0, PSIMAX 0.0 WRx=0.0,wRY=0.0,WRz=0.0 &END &BINP8B DXMAX=0. 0. DYMAX.0. DZMAX 0.0 Wx=0.0,WrY=0.0,WTz=0.000, &END B|NP9cBAR=61.25,SREF=14400.0, SSPAN=120.0, RMRX=200.00,RMPY=0.00.RMPz=0.00, &END &BINP10 NORSET=0. NBCHGE=O, NCZONE=0 NCZPCH=O CZDUB=0.0. VREF=0.0 &END &BINP11 NORPCH=0, NORF=0, NORL=0 NOCF=0, NOCL=0. VNORM=0.0 &END &BINP12 KPAN=0. KSIDE=0, NEWNAB=0. NEWSID=0 &END & BINP13 NBLIT =1 &END &ASEM1 ASEMX= 0.0000, ASEMY= 0.0000, ASEMZ= 0.0000 ASCAL= 1.0000, ATHET= 0.0, NODEA= 5 8cOMP1CMR×=0.0000, COMPY=0.0000. COMPZ=0.0000, CSCALE 1.0000, CTHET= 0.0 NODEC= 5 &END &PATCHI IREV=0, IDPAT=1. MAKE=0, KcoMP=1 KASS=1, IPATSYM=0. IPATCOP=0, &END wNG[ Patch1,10×218 &SECT1 STX=0.0, STY=0.0, STZ=0.0, SCALE=1.0 ALF=0. 0, THETA=0., INMODE=4 TNODS=0, TNPS=0, TINTS=0 &END 214.727316.58460.0000 213.850316.5982-0.0393 211.259816.6341-0.1770 For Help, press F1 〓讲稿-2 T a Microsoft PowerP Digital Wind Tun m|.个9:28

c Postmarc v 4.7.3(D: \CFD\CFD Software\AeroLogic\Postmarclexample\ling-bodylving-body bin File yiew Display Derived Data What's New Help 幽占R@、回@四-感=四② y 开始讲2 「 Postmark Postmarc v 4.7.3

Postmarc v 4. 7. 3(D: \CFD\CFD Software\AeroLogic\Postmarc\example\ ing-body\ving-body bin File view Display Derived Data What's New Help 出占R@(、回@凹枣叫国创 0.06 Coefficient of pressure time state =3 File: d:cfdicfd softwarelaerologiclpostmarclexamplewwing-bodywing-body bin 0.0182 -0.0964 -0.253 -0.331 -0.409 -0.487 -0.644 -0.8

The CMARC input file o General format The file uses a fortran namelist format in which variable names are joined to values by equals signs Each line begins with an ampersand(&)in the second column and ends with &END The first column is empty Line feeds are ignored, and an input line may extend over several physical lines a generic line might look like this &Data VaR1=2. VaR2=0. VaR3=0. &END The commas may be omitted
The CMARC input file General format • The file uses a Fortran NAMELIST format in which variable names are joined to values by equals signs. • Each line begins with an ampersand (&) in the second column and ends with &END. – The first column is empty. – Line feeds are ignored, and an input line may extend over several physical lines. – A generic line might look like this: &DATA VAR1=2, VAR2=0, VAR3=0, &END • The commas may be omitted

The CMARc input file Units Any units of measure may be used, but they must be consistent throughout For example, if the body geometry is defined in inches, all speeds should be in inches per second rather than feet per second or miles per hour
The CMARC input file Units • Any units of measure may be used, but they must be consistent throughout. • For example, if the body geometry is defined in inches, all speeds should be in inches per second rather than feet per second or miles per hour

The CMARc input file Axes and rotations A conventional coordinate system is used X representing the longitudinal axis and increasing aft Y the spanwise axis increasing to the starboard Z the vertical axis increasing upward All rotations are performed in accordance with the right hand rule
The CMARC input file Axes and rotations • A conventional coordinate system is used – X representing the longitudinal axis and increasing aft – Y the spanwise axis increasing to the starboard – Z the vertical axis increasing upward. • All rotations are performed in accordance with the right hand rule
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 面向CCAR-121部飞行员培训(PPT讲稿)航线运输驾驶员整体课程及141部咨询通告.ppt
- Intelligent Techniques for Improving theAviation Operations.ppt
- 中国科学技术大学:暗能量、残余引力波、CMB极化 Dark energy, relic GW and CMB polarization.ppt
- 北京大学:《天文学》课程教学资源(PPT讲稿)Radio and Gamma-ray emission of pulsars.ppt
- 南京大学:《天文学》课程教学资源(PPT讲稿)Recent Progress on Gamma-Ray Bursts and GRB Cosmology.ppt
- 火星探测的主要科学问题(PPT讲稿).ppt
- 国防工业出版社:飞机飞行控制技术丛书《飞行控制系统的分析系统》PDF电子书 Subsystem of Flight Control System(刘林、郭恩友).pdf
- 山东教育出版社:科学技术前沿系列丛书《航空航天科学技术》PDF电子书(航天卷,共八章).pdf
- 空军航空大学飞行基础训练基地数学教研室:《计算方法》PPT教学讲稿(赵秀影).ppt
- 空军航空大学:《计算方法与实习》讲课稿(赵秀影).ppt
- 《航模纸图》VF-IS VALKYRIE.pdf
- 《航模纸图》VF-1S GERWALK.pdf
- 《航模纸图》VF-IS GERWALK.pdf
- 《航模纸图》VF-IS GERWALK.pdf
- 《航模纸图》VF-IS VALKYRIE.pdf
- 《航模纸图》VF-IS VALKYRIE.pdf
- 中国民航大学:《航空材料与腐蚀防护》讲义 (航空材料部分).doc
- 中国民航大学:《航空材料与腐蚀防护》讲义(腐蚀与防护部分).doc
- 西北工业大学:《航天器控制原理》课程教学资源(PPT课件)第五章 航天器的被动姿态控制系统.ppt
- 西北工业大学:《航天器控制原理》课程教学资源(PPT课件)第十章 航天飞机的制导与控制.ppt
- 民航飞行标准培训中心:91部总则和运行合格要求——CCAR-91部介绍(B章)飞行规则.pptx
- 民航飞行标准培训中心:91部总则和运行合格要求——CCAR-91部介绍(A、H、J、K、L、M、N、O、P章).ppt
- 民航飞行标准培训中心:面向CCAR-121部飞行员培训(PPT讲稿)CCAR-141部飞机类商用执照课程.ppt
- 惯性导航系统实施区域导航(PPT讲稿).ppt
- 民航飞行标准培训中心:91部运行的飞行员政策解读(2012年6月).pptx
- 南京航空航天大学:航空发动机磨损故障智能诊断若干关键技术研究及专家系统开发(博士学位论文答辩).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)课程概述、第一章 绚丽多彩的太空(焦维新、傅遂燕、谢伦).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第二章 地球空间(大气层与电离层).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第二章 地球空间(磁层与辐射带).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第二篇 探索太空 第六章 太空飞行基础.ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第四章 日球空间(月球文化与月球探测).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第四章 日球空间(类木行星与外太阳系).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第四章 日球空间(太阳系).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第七章 探索太空的航天器.ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第三章 日地空间(太阳与太阳风).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第九章 载人航天(载人航天的类型、载人航天的发展历程、载人航天的科学、商业和军事应用).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第五章 宇宙 5.1 恒星及其演化 5.2 宇宙的结构.ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第十一章 现代战争与空间天气(焦维新).ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第十二章 太空灾害及预防.ppt
- 北京大学:《太空探索》精品课程教学资源(PPT课件)第十章 太空资源及其应用.ppt