中国高校课件下载中心 》 教学资源 》 大学文库

香港中文大学:《Design and Analysis of Algorithms》课程教学资源(辅导课件)tutorial 12

文档信息
资源类别:文库
文档格式:PPTX
文档页数:12
文件大小:334.56KB
团购合买:点击进入团购
内容简介
香港中文大学:《Design and Analysis of Algorithms》课程教学资源(辅导课件)tutorial 12
刷新页面文档预览

CSCI 3160 Design and Analysis of Algorithms Tutorial 12 Chengyu Lin

CSCI 3160 Design and Analysis of Algorithms Tutorial 12 Chengyu Lin

Outline 。Online Algorithm Competitive Analysis ·Primal-Dual Method

Outline • Online Algorithm • Competitive Analysis • Primal-Dual Method

Online vs.Offline Each round part of the input is revealed Make irrevocable decision each round Example:Secretary Problem

Online vs. Offline • Each round part of the input is revealed • Make irrevocable decision each round • Example: Secretary Problem

Applications Real-world problems(secretary problem) Streaming Algorithm(memory limited computation,big data) Online Machine Learning

Applications • Real-world problems (secretary problem) • Streaming Algorithm (memory limited computation, big data) • Online Machine Learning

Competitive Analysis Competitive Ratio-quantifies how good an online algorithm is.(Like approximation ratio) -ALG Output of online algorithm -OPT:Output of the optimal offline algorithm CALG Competitive ratio a max

Competitive Analysis • Competitive Ratio – quantifies how good an online algorithm is. (Like approximation ratio) – 𝐴𝐿𝐺 : Output of online algorithm – 𝑂𝑃𝑇 : Output of the optimal offline algorithm – Competitive ratio 𝛼 = max 𝐴𝐿𝐺 𝑂𝑃𝑇 , 𝑂𝑃𝑇 𝐴𝐿𝐺

Ski rental problem k rounds with unknown k Each rounds you can decide -Rent a ski cost 1 Buy a ski:cost B Optimal cost:min(k,B)

Ski rental problem • 𝑘 rounds with unknown 𝑘 • Each rounds you can decide – Rent a ski : cost 1 – Buy a ski : cost 𝐵 • Optimal cost: min 𝑘, 𝐵

Primal-Dual Method Primal: Dual: k k min B.x+ max yj j=1 j=1 s.t.x+zj≥1, j∈[k] x≥0,z1≥0, j∈[k] s.t. ∑ysB j= y∈[0,1]j x:the 'probability'of buying a ski Zi:the 'probability'of renting a ski at j-th round y:helping make decision

Primal-Dual Method Primal: min 𝐵 ⋅ 𝑥 +෍ 𝑗=1 𝑘 𝑧𝑗 𝑠.𝑡. 𝑥 + 𝑧𝑗 ≥ 1, ∀𝑗 ∈ 𝑘 𝑥 ≥ 0, 𝑧𝑗 ≥ 0, ∀𝑗 ∈ 𝑘 Dual: max ෍ 𝑗=1 𝑘 𝑦𝑗 𝑠.𝑡. ෍ 𝑗=1 𝑘 𝑦𝑗 ≤ 𝐵 ∀𝑗 𝑦𝑗 ∈ [0,1] ∀𝑗 𝑥 : the ‘probability’ of buying a ski 𝑧𝑗 : the ‘probability’ of renting a ski at 𝑗-th round 𝑦𝑗 : helping make decision

Primal-Dual Method Explore a solution (p,d)which is feasible for primal and dual,respectively. -p algorithm's output -d:a lower bound of the optimal solution (recall the weak duality theorem) -Complementary slackness for optimal: ·x(B-∑=1y)=0 ·z(1-y)=0

Primal-Dual Method • Explore a solution (𝑝, 𝑑) which is feasible for primal and dual, respectively. – 𝑝 : algorithm’s output – 𝑑 : a lower bound of the optimal solution (recall the weak duality theorem) – Complementary slackness for optimal: • 𝑥 𝐵 − σ𝑗=1 𝑘 𝑦𝑗 = 0 • 𝑧𝑗 1 − 𝑦𝑗 = 0

Primal-Dual Algorithm ·x=0,yj=0 for each newj=1,2,...,k ifx <1 x←X+ B where c=(1+2)1 1 十 ☑=1-x y5=1 Intuitively,at j-th round,we rent with probability Zi

Primal-Dual Algorithm • 𝑥 = 0, 𝑦𝑗 = 0 for each new 𝑗 = 1,2,… , 𝑘 if 𝑥 < 1 𝑥 ← 𝑥 + 𝑥 𝐵 + 1 𝑐𝐵 , where 𝑐 = 1 + 1 𝐵 𝐵 − 1 𝑧𝑗 = 1 − 𝑥 𝑦𝑗 = 1 • Intuitively, at 𝑗-th round, we rent with probability 𝑧𝑗

Primal-Dual Algorithm ·Pick∈[O,1]uniformly at random. Suppose t is the first day that>=ixj≥, then rent in all days before t and buy on day t. ●Facts: -Rental probability 1- Buying probability:>=1=x

Primal-Dual Algorithm • Pick 𝛼 ∈ [0,1] uniformly at random. • Suppose 𝑡 is the first day that σ𝑗=1 𝑡 𝑥𝑗 ≥ 𝛼, then rent in all days before 𝑡 and buy on day 𝑡. • Facts: – Rental probability : 1 − σ𝑖=1 𝑗−1 𝑥𝑖 = 𝑧𝑗 – Buying probability: σ𝑗=1 𝑡 𝑥𝑗 = 𝑥

共12页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档