国防科学技术大学:《数理逻辑》(英文版)Lecture 2 Propositional Calculus

Logic in Computer Science An Introductory Course for Master Students Wang j iwang@nudt.edu.cn Lecture 2 Propositional calculus Logic in Computer Science- p 1/39
Logic in Computer Science An Introductory Course for Master Students Wang Ji jiwang@nudt.edu.cn Lecture 2 Propositional Calculus Logic in Computer Science – p.1/39

Syntax Formation Rules for p The The Axiomatic Structure of p Theorems and derived rules Logic in Computer Science- p 2/39
Syntax • Formation Rules for P • The The Axiomatic Structure of P • Theorems and Derived Rules Logic in Computer Science – p.2/39

Primitive Symbols The primitive symbols of p are the following Improper symbols: ( Proper symbols: denumerably many propositional variable, p,g, r, p1, 91, r1, 2: The set of Primitive Symbols Logic in Computer Science - p 3/39
Primitive Symbols The primitive symbols of P are the following: • Improper symbols: (,), ∼,∨ • Proper symbols: denumerably many propositional variable, p, q, r, p1, q1, r1, · · · Σ :The set of Primitive Symbols Logic in Computer Science – p.3/39

Well-formed formulas The set of wffs is the intersection of all sets s of formulas such that 1. pE S for each propositional variable p 2. For each formula a,fA∈S,then(~A)∈S 3. For all formulas a and B,ifA∈ s and e∈S, then(A∨B)∈S a wff is a member of the set of wffs Logic in Computer Science- p 4/39
Well-Formed Formulas The set of wffs is the intersection of all sets S of formulas such that: 1. p ∈ S for each propositional variable p 2. For each formula A, if A ∈ S, then (∼ A) ∈ S 3. For all formulas A and B, if A ∈ S and B ∈ S, then (A ∨ B) ∈ S A wff is a member of the set of wffs. Logic in Computer Science – p.4/39

Principle of Induction on Wif Let be a property of formulas, and let r( A)mean that a has property Suppose r(a) for each propositional variable q 2. Whenever R(A), then e(o a 3. Whenever (A) and Se(B), then R ((AV B) Then every wff has property i Logic in Computer Science - p 5/39
Principle of Induction on Wff Let < be a property of formulas, and let <(A) mean that A has property <. Suppose 1. <(q) for each propositional variable q. 2. Whenever <(A), then <(∼ A). 3. Whenever <(A) and <(B), then <((A ∨ B)). Then every wff has property <. Logic in Computer Science – p.5/39

abbreviations (A∧B) stands for~(~A∨~B (A→B) stands for(~AVB A≡B) stands for(AB)∧(BA) Logic in Computer Science - p 6/39
Abbreviations • ( A ∧ B ) stands fo r ∼ ( ∼ A ∨ ∼ B ) • ( A ⊃ B ) stands fo r ( ∼ A ∨ B ) • ( A ≡ B ) stands fo r (( A ⊃ B ) ∧ ( B ⊃ A)) Logic in Computer Science – p.6/39

Substitution A function:∑*→∑* is a substitution iff 1.f∈∑.,then(x)≠6 2.fx,y∈∑*,then(xy)=(x)(y) If B1 and B2 are substitutions such that B1(a)=B2() for every primitive symbol then Logic in Computer Science - p 7/39
Substitution A function θ : Σ∗ → Σ∗is a substitution iff 1. If x ∈ Σ, then θ(x) 6= 2. If x, y ∈ Σ∗, then θ(xy) = θ(x)θ(y) If θ1 and θ2 are substitutions such that θ1(x) = θ2(x) for every primitive symbol x, then θ1 = θ2 Logic in Computer Science – p.7/39

Substitution( Continued A substitution e is finite iff{∈∑(x)≠x}is finite a substitution o is a substitution for variables iff the only primitive symbols such that 0(a)* are variables Let I1,...,In be distinct primitive symbols and let Y1, ... Yn be formulas. Sy, ym is a substitution e such that Y if x C if c E{x1,…,m Logic in Computer Science -p 8/39
Substitution(Continued) • A substitution θ is finite iff { x ∈ Σ|θ ( x ) 6= x } is finite. • A substitution θ is a substitution fo r variables iff the only primitive symbols x such that θ ( x ) 6= x are variables. • Let x 1, · · · , x n b e distinct primitive symbols and let Y1, · · · , Yn b e formulas. S x 1,···,x n Y1,···,Yn is a substitution θ such that θ ( x ) = Yi if x = x i, 1 ≤ i ≤ n x if x 6∈ { x 1, · · · , x n } Logic in Computer Science – p.8/39

The Axiomatic Structure of p ience-p. 9 /39
The Axiomatic Structure of P Axiom Schema 1 A ∨ A ⊃ A Axiom Schema 2 A ⊃ (B ∨ A) Axiom Schema 3 A ⊃ B ⊃ (C ∨ A ⊃ (B ∨ C)) Modus Ponens (MP) A, A ⊃ B B Logic in Computer Science – p.9/39

The Axiomatic Structure of p Axiom schema1A∨A2A ience-p. 9 /39
The Axiomatic Structure of P Axiom Schema 1 A ∨ A ⊃ A Axiom Schema 2 A ⊃ (B ∨ A) Axiom Schema 3 A ⊃ B ⊃ (C ∨ A ⊃ (B ∨ C)) Modus Ponens (MP) A, A ⊃ B B Logic in Computer Science – p.9/39
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 1 Preliminaries.pdf
- 国防科学技术大学:《数理逻辑》课程考试模拟试卷.pdf
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第六章 Matlab程序.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第五章 Matlab绘图.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第四章 数据类型和输入输出.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第三章 矩阵和Matlab(主讲:袁杰).ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第二章 Matlab基本知识.ppt
- 《Visual Basic6.0程序设计》绪论.ppt
- 《Visual Basic6.0程序设计》第五章 对话框与菜单.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第四章 窗体及常用控件.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第三章 VB语言程序设计基础.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第三章 VB语言程序设计基础.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第六章 过程、模块与类.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第二章 中文Visual Basic(VB)6.0概述.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第五章 对话框与菜单.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第七章 常用算法.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第一章 程序设计概述.ppt
- 万博科技职业学院:《Visual Basic程序设计》讲义.ppt
- 《Excel 2003讲义》第五章 电子表格中文Excel 2003.ppt
- 《VFP应用实例》应用实例.ppt
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 3 Propositional Calculus(Cont’d).pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 4 Propositional Calculus(Cont’d).pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 5 Predicate Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 6 Reasoning in Predicate Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 7 Prenex Normal Form.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 8 Semantics.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 9 Independence.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 10 Completenss.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 11 Syntax.pdf
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第7章 防火墙(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第1章 网络管理概述(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第2章 管理信息结构与管理信息库(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第3章 SNMP通信模型与RMON规范(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第4章 网络管理系统(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第5章 网络安全基础(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第6章 网络安全技术(李艇).ppt
- 清华大学:《文献检索》Practice1_work.doc
- 清华大学:《文献检索》课程教学资源(PPT课件)1、检索基础知识.ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)2、计算机信息检索.ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)3、计算机检索方法(Ei_Web).ppt