国防科学技术大学:《数理逻辑》(英文版)Lecture 11 Syntax

Logic in Computer Science An Introductory Course for Master Students Wang j iwang@nudt.edu.cn Lecture 11 FOL with equality Logic in Computer Science - p 1/15
Logic in Computer Science An Introductory Course for Master Students Wang Ji jiwang@nudt.edu.cn Lecture 11 FOL with Equality Logic in Computer Science – p.1/15

SYNTAX Logic in Computer Science - p 2/15
Syntax Logic in Computer Science – p.2/15

F F=F+“=”+2 Axiom schemata axiom schema 6 c= x Axiom Schema 7 =y)(SzA) SZ A)where a is an atomic wff A first order theory is a first-order theory wit equality if it has a binary predicate such that the wffs above are theorem of the theory Logic in Computer Science-p.3/15
F= F= = F + “ = ” + 2 Axiom Schemata Axiom Schema 6 x = x. Axiom Schema 7 x = y ⊃ (SzxA ⊃ SzyA) where A is an atomic wff. A first order theory is a first-order theory with equality if it has a binary predicate = such that the wffs above are theorem of the theory. Logic in Computer Science – p.3/15

Properties of“=” C=yDy=E 2.Fx=y2(y=22x=2 3. F=y)(S2A= S, A)where a and y are free for e in a 4.Fx=y(S2t=S2+) 5.}m1=91∧…∧x f(g1,., yn) for any n-ary function symbol f 6.x1=91A…∧xn )for any n-ary predicate symbol P Logic in Computer Science -p 4/15
Properties of “=” 1. ` x = y ⊃ y = x 2. ` x = y ⊃ (y = z ⊃ x = z) 3. ` x = y ⊃ (SzxA ≡ SzyA) where x and y are free for z in A. 4. ` x = y ⊃ (Szxt = Szy t) 5. ` x1 = y1 ∧ · · · ∧ xn = yn ⊃ f(x1, · · · , xn) = f(y1, · · · , yn) for any n-ary function symbol f. 6. ` x1 = y1 ∧ · · · ∧ xn = yn ⊃ (P(x1, · · · , xn) ≡ P(y1, · · · , yn)) for any n-ary predicate symbol P. Logic in Computer Science – p.4/15

First Order Theory with Equality Let t be a first-order theory with a binary predicate constant= such that T0= 2.+rm1=1∧…∧ →f(x℃ m f(9,…,yn) for any n-ary function symbol∫ Frm1=A…∧xn=9n(P(m1, an)三 (y1,., gn))for any n-ary predicate symbol P Then T is a first order theory with equality Logic in Computer Science-p.5/15
First Order Theory with Equality Let T be a first-order theory with a binary predicate constant = such that 1. `T x = x 2. `T x1 = y1 ∧ · · · ∧ xn = yn ⊃ f(x1, · · · , xn) = f(y1, · · · , yn) for any n-ary function symbol f. 3. `T x1 = y1 ∧ · · · ∧ xn = yn ⊃ (P(x1, · · · , xn) ≡ P(y1, · · · , yn)) for any n-ary predicate symbol P. Then T is a first order theory with equality. Logic in Computer Science – p.5/15

彐!and彐! 彐! a stands for xA∧vxVy(A∧SAx=y) 彐!! A stands for VnVy(A∧SAx=y) y where y is the first individual variable distinct from and all variables which occur in a Logic in Computer Science-p.6/15
∃! and ∃!! ∃!xA stands for ∃xA ∧ ∀x∀y(A ∧ Sxy A ⊃ x = y) ∃!!xA stands for ∀x∀y(A ∧ Sxy A ⊃ x = y) where y is the first individual variable distinct from x and all variables which occur in A. Logic in Computer Science – p.6/15

Sequent rules T,A1,…,Ak→△ → Where,A1,……, Ak are of the following forms s1=t1∧…∧Sn=tnf( Sn) f(t ∧…∧Sn=tn^P(1 Logic in Computer Science-p.7/15
Sequent Rules Γ, A1, · · · , Ak ⇒ ∆ Γ ⇒ ∆ where, A1, · · · , Ak are of the following forms • t = t • s1 = t1 ∧ · · · ∧ sn = tn ⊃ f(s1, · · · , sn) = f(t1, · · · ,tn) • s1 = t1 ∧ · · · ∧ sn = tn ∧ P(s1, · · · , sn) ⊃ P(t1, · · · ,tn) Logic in Computer Science – p.7/15

SEMANTICS Logic in Computer Science-p.8/15
Semantics Logic in Computer Science – p.8/15

Equality-Interpretation An interpretation model D, Io> for a first order language with an equality predicate is an equality-interpretation (model iff Io()is the identity relation on D Logic in Computer Science-p.9/15
Equality-Interpretation An interpretation [model] for a first order language with an equality predicate = is an equality-interpretation [model] iff I0(=) is the identity relation on D. Logic in Computer Science – p.9/15

Soundness theorem If M is an equality-model for a set r of sentences and THe= A, then Fm A Logic in Computer Science- p10/15
Soundness Theorem If M is an equality-model for a set Γ of sentences and Γ `F= A, then |=M A. Logic in Computer Science – p.10/15
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 10 Completenss.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 9 Independence.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 8 Semantics.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 7 Prenex Normal Form.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 6 Reasoning in Predicate Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 5 Predicate Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 4 Propositional Calculus(Cont’d).pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 3 Propositional Calculus(Cont’d).pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 2 Propositional Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 1 Preliminaries.pdf
- 国防科学技术大学:《数理逻辑》课程考试模拟试卷.pdf
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第六章 Matlab程序.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第五章 Matlab绘图.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第四章 数据类型和输入输出.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第三章 矩阵和Matlab(主讲:袁杰).ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第二章 Matlab基本知识.ppt
- 《Visual Basic6.0程序设计》绪论.ppt
- 《Visual Basic6.0程序设计》第五章 对话框与菜单.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第四章 窗体及常用控件.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第三章 VB语言程序设计基础.ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第7章 防火墙(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第1章 网络管理概述(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第2章 管理信息结构与管理信息库(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第3章 SNMP通信模型与RMON规范(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第4章 网络管理系统(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第5章 网络安全基础(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第6章 网络安全技术(李艇).ppt
- 清华大学:《文献检索》Practice1_work.doc
- 清华大学:《文献检索》课程教学资源(PPT课件)1、检索基础知识.ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)2、计算机信息检索.ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)3、计算机检索方法(Ei_Web).ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)4、计算机检索方法(SCI_Web).ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)5、学术资源的利用(孙平).ppt
- 清华大学:《文献检索》Sci_web_work.doc
- 清华大学:《文献检索》Ei_web.doc
- 广西大学:《计算机操作系统》课程教学资源(PPT课件)第7章 I/O设备管理.ppt
- 广西大学:《计算机操作系统》课程教学资源(PPT课件)第8章 文件管理.ppt
- 广西大学:《计算机操作系统》课程教学资源(PPT课件)内容简介(董明刚).ppt
- 广西大学:《计算机操作系统》课程教学资源(PPT课件)第1章 操作系统概论.ppt
- 广西大学:《计算机操作系统》课程教学资源(PPT课件)第2章 进程描述与控制.ppt