国防科学技术大学:《数理逻辑》(英文版)Lecture 1 Preliminaries

Logic in Computer Science An Introductory Course for Master Students Wang j iwang@nudt.edu.cn ecture One Preliminaries Logic in Computer Science- p 1/16
Logic in Computer Science An Introductory Course for Master Students Wang Ji jiwang@nudt.edu.cn Lecture One Preliminaries Logic in Computer Science – p.1/16

Theory of equivalence relations (A,R) (E1) For all r: ra (E2 )For all y: If a Ry then y ro (E3)For all 9, z If a Ry and g Rx then Rz Logic in Computer Science- p 2/16
Theory of Equivalence Relations (A, R) (E1) For all x : xRx. (E2) For all x, y : If xRy then yRx. (E3) For all x, y, z : If xRy and yRz then xRz. Logic in Computer Science – p.2/16

Theory of equivalence relations (A,R) (E1) For all r: ra (E2 )For all y: If a Ry then y ro (E3)For all 3, 3, 2: If x Ry and y rx then c Re For all and y, if there is a u such that Ru and Ru, then for all z, o rx if and only if y rx Logic in Computer Science- p 2/16
Theory of Equivalence Relations (A, R) (E1) For all x : xRx. (E2) For all x, y : If xRy then yRx. (E3) For all x, y, z : If xRy and yRz then xRz. For all x and y, if there is a u such that xRu and yRu, then for all z, xRz if and only if yRz. Logic in Computer Science – p.2/16

A Primary Analysis The concept“ Proposition” A formal language formulas The concept“ Follow from” Consequence relation The concept t“ Proof a sequence of formulas, Axioms, rules Logic in Computer Science -p 3/16
A Primary Analysis The concept “Proposition” A formal language, formulas The concept “Follow from” Consequence relation The concept “Proof” A sequence of formulas, Axioms, Rules Logic in Computer Science – p.3/16

Induction Consider an initial set b Cu and a class f of functions containing just two members f and g Where f:U×U→ U and g:U→U Let b=a, b. How to define the set c which contains b,f(b,b),9(a),f((a),f(b,b), Logic in Computer Science- p 4/16
Induction Consider an initial set B ⊆ U and a class F of functions containing just two members f and g, where f : U × U → U and g : U → U Let B = {a, b}. How to define the set C which contains b, f(b, b), g(a), f(g(a), f(b, b)), · · · Logic in Computer Science – p.4/16

Induction: from the top down A subset of s of u is closed under f and g iff whenever elements and y belong to s, then so do f(,g) and g(a S is inductive iff b c s and s is closed under f and Let c be the intersection of all the inductive subsets of u. then C is inductive Logic in Computer Science-p.5/16
Induction: from the top down A subset of S of U is closed under f and g iff whenever elements x and y belong to S, then so do f(x, y) and g(x). S is inductive iff B ⊆ S and S is closed under f and g. Let C∗ be the intersection of all the inductive subsets of U. Then C∗ is inductive. Logic in Computer Science – p.5/16

Induction: from the bottom up Let Cx be the set of things which can be reached from b by applying f and g a finite number of times. Define a constructive sequence to be a finite sequence of elements of U such that for each i< m we have at least one of c;∈B f(;, Ik)for some i<i, k< i i=g(ai) for some j < i Then Ck is the set of all points such that some construction sequence ends with Logic in Computer Science -p6/16
Induction: from the bottom up Let C∗ be the set of things which can be reached from B by applying f and g a finite number of times. Define a constructive sequence to be a finite sequence of elements of U such that for each i ≤ n we have at least one of xi ∈ B xi = f(xj , xk) for some j < i, k < i xi = g(xj ) for some j < i Then C∗ is the set of all points x such that some construction sequence ends with x. Logic in Computer Science – p.6/16

Let ∩{S: S is inductive} where Cm is the set of points such that some construction sequence of length m ends with a We have So, we call the set simply C and refer to it as the set generated from b by the functions in F Logic in Computer Science-p. 7/16
C∗ = C∗ Let C∗ = T{S : S is inductive } C∗ = Sn Cn where Cn is the set of points x such that some construction sequence of length n ends with x. We have C∗ = C∗ So, we call the set simply C and refer to it as the set generated from B by the functions in F. Logic in Computer Science – p.7/16

Induction Principle Assume that C is the set generated from b by the functions in f if s is a subset of c which includes b and is closed under the functions of f then Logic in Computer Science -p8/16
Induction Principle Assume that C is the set generated from B by the functions in F. If S is a subset of C which includes B and is closed under the functions of F, then S = C Logic in Computer Science – p.8/16

Ro excursion There is a set u a subset b of u and two functions f and g, where f:U×U→ U and g:U→U C is the set generated from b by f and g The problem is how to define a function on c recur sively Logic in Computer Science-p.9/16
Recursion There is a set U, a subset B of U, and two functions f and g, where f : U × U → U and g : U → U C is the set generated from B by f and g. The problem is how to define a function on C recursively. Logic in Computer Science – p.9/16
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 国防科学技术大学:《数理逻辑》课程考试模拟试卷.pdf
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第六章 Matlab程序.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第五章 Matlab绘图.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第四章 数据类型和输入输出.ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第三章 矩阵和Matlab(主讲:袁杰).ppt
- 金陵学院:《计算机应用》课程教学资源(PPT课件)第二章 Matlab基本知识.ppt
- 《Visual Basic6.0程序设计》绪论.ppt
- 《Visual Basic6.0程序设计》第五章 对话框与菜单.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第四章 窗体及常用控件.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第三章 VB语言程序设计基础.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第三章 VB语言程序设计基础.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第六章 过程、模块与类.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第二章 中文Visual Basic(VB)6.0概述.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第五章 对话框与菜单.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第七章 常用算法.ppt
- 《Visual Basic 6.0程序设计》课程电子教案(PPT教学课件)第一章 程序设计概述.ppt
- 万博科技职业学院:《Visual Basic程序设计》讲义.ppt
- 《Excel 2003讲义》第五章 电子表格中文Excel 2003.ppt
- 《VFP应用实例》应用实例.ppt
- 《数字平面艺术设计》课程教学资源(教材PPT课件,图片版)第1章 视觉传达原理与平面设计基础知识.ppt
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 2 Propositional Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 3 Propositional Calculus(Cont’d).pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 4 Propositional Calculus(Cont’d).pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 5 Predicate Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 6 Reasoning in Predicate Calculus.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 7 Prenex Normal Form.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 8 Semantics.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 9 Independence.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 10 Completenss.pdf
- 国防科学技术大学:《数理逻辑》(英文版)Lecture 11 Syntax.pdf
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第7章 防火墙(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第1章 网络管理概述(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第2章 管理信息结构与管理信息库(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第3章 SNMP通信模型与RMON规范(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第4章 网络管理系统(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第5章 网络安全基础(李艇).ppt
- 《计算机网络管理与安全技术》课程教学资源(PPT课件)第6章 网络安全技术(李艇).ppt
- 清华大学:《文献检索》Practice1_work.doc
- 清华大学:《文献检索》课程教学资源(PPT课件)1、检索基础知识.ppt
- 清华大学:《文献检索》课程教学资源(PPT课件)2、计算机信息检索.ppt