《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 4 Fields of Stationary Electric Charges:Ⅲ

Chapter 4 Fields of Stationary Electric Charges: III Capacitance of An isolated Conductor Capacitance btwn TWo Conductors Potential Energy of a Charge Distribution Energy density in an Electric Field Forces on conductors
Chapter 4 Fields of Stationary Electric Charges : III ◼ Capacitance of An Isolated Conductor ◼ Capacitance btwn Two Conductors ◼ Potential Energy of a Charge Distribution ◼ Energy Density in an Electric Field ◼ Forces on Conductors

4.1 Capacitance of an isolated conductor Consider an isolated conductor, either carrying charges or not We know that the potential v on the conductor is always a constant Both experiments and theory show that, as charge is added to it, its potential rises The magnitude of the change in potential is the amount of charge added and depends on the geomet rical configuration of the conductor as well. This fact can be sum marized as C is called the capacitance of the conductor

Remarks (1) The physical meaning of C is the amount of charge needed to rise the potential by a unit(volt). In SI unit, C has the unit farad coulomb I farad U0 (2)Although C has been defined to be Q/V, it actually depends only on the size and shape of the conductor Example 1. isolated spherical conductor of radius R If it has a charge Q on it, then the potential is 4丌∈ 0 so the capacitance is given by C=Q/V=4丌oR

4.2 Capacitance btwn two conductors Note that an isolated conductor certain restrictions (1)In reality, a conductor is always under influence of the environment So it's difficult to isolate a conductor (2 )An isolated conductor has a small C. For instance a conductor of the size of the earth r=64×10°m, C=4丌0R=7×10 4 F Thus, we need capacitors consisting of two conductors

Example 1. Parallel-plate capacitor(see Fig 4-2) Each of the two plates has an area a and the spacing bwtn them is s One carries a charge @, the other carries-Q So the field btwn is E=F=Eoa and the potential difference is V=Es the capacitance is 02 Say, A=(50 M)2, s=0.1mM, then C X 10+ F. It's greater than that of the earth

A a Figure 4-2 Parallel-plate capacitor, The lower end of the small cylindrical figure is situated inside the lower plate where E=0

Example 2. Concentric-spherical-shell capacitor One has a radius ra and carries a charge Q, the other Rb and-Q(Rb> Ra) So the field btwn the shells is e=9g and the potential difference bwtn the shells is E·dl Qdr Q 1 1 Ra t 4丌∈ 4丌∈ Ra R the capacitance is Q4丌∈n Rb v Rb -Ra As Rb ->0, this approaches to the isolated conduc- tor Taking Ra n rb=60M, rb- Ra=0.1mM, then C is as large as that of the earth

Capacitors Connected in Parallel (see Fig 4-3) Two capacitors C1 and C2 carrying charges Q1 and The potential difference is v, the same for both ca factors The total charge is Q=Q1+Q2=C1V+C2V=(C1+C2) o the total capacitance is Conclusion for capacitors ci i= 1, 2,.. connected in ara e total capacitance is

Q Cr C Figure 4-3 The single capacitor C has the same capacitance as the two capacitors C and C, connected in parallel

Capacitors Connected in Series(see Fig 4-4) Two capacitors C1 and C2, each carries a charge Q The potential differences for C1, and for C2, are The total potential difference is V1+V2 Q x C2 Q(+,) and thus the total capacitance is V C1+C Conclusion: for capacitors cy connected in series, the total capacitance is given by
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 3 Fields of Stationary Electric Charges.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 20 Electromagnetic Waves.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 2 Fields of Stationary Electric Charges.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 19 Maxwell,s Equations.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 14 Magnetic Fields:VII.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 13Magnetic Fields:VI.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 12 Magnetic Fields:V.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 11 Magnetic Fields:Iv.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 10 Magnetic Fields 10.1 The Lorentz Force.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 1 Vectors.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第四章 动能和势能.ppt
- 中国科学院物理学院普通物理学课程:《力学》教程PPT课件 第十章 波动和声(蒋小平).ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第十二章 相对论简介.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第六章 万有引力定律.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第八章 弹性体的应力和应变.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第五章 角动量——关于对称性.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第九章 振动.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第三章 动量定理和动量守恒定律.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第七章 刚体力学.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第一章 物理学和力学.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 5 Direct Currents in Electric Circuits.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 6 Dielectrics:I.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 7 Dielectrics:II.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 8 Magnetic Fields:I.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 9 Magnetic Fields:II.ppt
- 华南农业大学物理力学(英文版):《 MECHANICS》.ppt
- 质谱法( Mass Spectrometry,MS) 的应用与历史发展.doc
- 质谱分析原理及质谱仪( Mass Spectrograph)原理概述.ppt
- 核磁共振波谱法( Nuclear Magnetic Resonance Spectroscopy,NMR) NMR简介.doc
- 分子发光分析 (Molecular Luminescence Analysis)基本原理概述.ppt
- 红外光谱法 (Infrared Analysis, IR) 基本原理概述.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-1)磁感应强度 磁场的高斯定理.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-2)毕奥-萨伐尔定律.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-4)安培环路定理.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-6)洛仑兹力.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-8)安培定律.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-3)磁感应强度.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十二章 磁介质中的磁场(12-1)介质的磁化.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十二章 磁介质中的磁场(12-3)磁场强度.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十二章 磁介质中的磁场(12-5)铁磁质.ppt