《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 3 Fields of Stationary Electric Charges

Chapter 3 Fields of Stationary Electric Charges: II Solid angles Gauss' Law Conductors a Poisson's equation Laplace's equation Uniqueness Theorem - lmages
Chapter 3 Fields of Stationary Electric Charges : II ◼ Solid Angles ◼ Gauss’ Law ◼ Conductors ◼ Poisson’s Equation ◼ Laplace’s Equation ◼ Uniqueness Theorem ◼ Images

3.1 Solid angles (1)Angle subtended by a curve(see Fig 3. 1 a small segment of curve dl subtends a small angle at P dl d sin e do integrating over the curve C yields d l sin e a=JC g radlan. (2 )Solid angle subtended by a surface(see Fig3. 3) a small element of area da subtends a small solid angle at P cos 8da r1. da integrating over a finite area S yields cos eda 2 steradian

If s is a closed surface containing p cos eda 4丌, steradian. If P is situated outside of S,(see Fig 3.4) cO s eda g2=/s-2=0

3.2 gauss’Law This law relates the flux of e thru a closed surface to the charge inside By using this law one can find e of simple charge dis- tributions easily Let a point charge q be at the point P inside the closed surface s. The flux of e thru a small element of area da is E. da Q r1. da Q d o 4丌∈0 4丌∈0 Integrating over yIelds JE da 4丌 4m∈0 4丌∈0

If several point charges Qi are inside th e fields is E=∑E2 The flux of e thru a small element of area da is E·da=∑E;da Integrating over S yields Q2;1 /sE.da=∑ ∑Q ∈ For a general distribution of charge inside s Q=/p(r')di so we have E da=o/p(r) The gauss law in integral form

By the divergence theorem the surface integral can be written as a volume integral Is E da=h,V ed Thus we have A,v. edr'=-/p(ra ∈∩ Since the volume is arbitrary V·E(r)=-p(r) i.e. at any point of space, the divergence of e is equal to the charge density divided by the permittivity The gauss law in differential form

Remarks: The integral form of the gauss law is very useful to get the E, especially when the charge distribution has some symmetry Examples (1)a point charge (2 )a infinite line of charge (3 a infinite sheet of charge a spherical charge The differential form of the gauss law is of funda mental importance, as it tells how the charge density determines the electric field e

3.3 Conductors A conductor is a material inside which charges can flow freely. (no resistance) For electrostatics,- equilibrium,- fixed in space, zero electric field -all points are at the same potential.(otherwise, charges will move. If a conductor is placed in an electric field charges flow within it, so as to produce a second electric field that cancels the first one in the conductor Applying Gauss'law V. E=p/Eo inside conductors, SInce E=0,→p=0 Conclusion the charge density is 0 inside a conductor Corollary any net charge on a conductor must reside on its surface

At the surface of a conductor e must be normal ie Eu=0, otherwise charges would flow along the sur ace. ( see Fg38) Applying Gauss'law to the surface, we have e=o/Eo different from an infinite sheet with E=o/2E0

da Figure 3-8 Portion of a charged conductor carrying a surface charge density a. The charge enclosed by the imaginary box is o da. There is zero field inside the conductor. Then, from Gauss' s law,E=ol∈o
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 20 Electromagnetic Waves.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 2 Fields of Stationary Electric Charges.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 19 Maxwell,s Equations.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 14 Magnetic Fields:VII.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 13Magnetic Fields:VI.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 12 Magnetic Fields:V.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 11 Magnetic Fields:Iv.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 10 Magnetic Fields 10.1 The Lorentz Force.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 1 Vectors.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第四章 动能和势能.ppt
- 中国科学院物理学院普通物理学课程:《力学》教程PPT课件 第十章 波动和声(蒋小平).ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第十二章 相对论简介.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第六章 万有引力定律.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第八章 弹性体的应力和应变.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第五章 角动量——关于对称性.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第九章 振动.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第三章 动量定理和动量守恒定律.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第七章 刚体力学.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)第一章 物理学和力学.ppt
- 西南大学:《普通物理学》课程PPT教学课件(力学)高等数学补充知识.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 4 Fields of Stationary Electric Charges:Ⅲ.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 5 Direct Currents in Electric Circuits.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 6 Dielectrics:I.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 7 Dielectrics:II.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 8 Magnetic Fields:I.ppt
- 《Electromagnetism, principles and application》教学课件(PPT讲稿)Chapter 9 Magnetic Fields:II.ppt
- 华南农业大学物理力学(英文版):《 MECHANICS》.ppt
- 质谱法( Mass Spectrometry,MS) 的应用与历史发展.doc
- 质谱分析原理及质谱仪( Mass Spectrograph)原理概述.ppt
- 核磁共振波谱法( Nuclear Magnetic Resonance Spectroscopy,NMR) NMR简介.doc
- 分子发光分析 (Molecular Luminescence Analysis)基本原理概述.ppt
- 红外光谱法 (Infrared Analysis, IR) 基本原理概述.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-1)磁感应强度 磁场的高斯定理.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-2)毕奥-萨伐尔定律.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-4)安培环路定理.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-6)洛仑兹力.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-8)安培定律.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十一章 真空中的恒定磁场(11-3)磁感应强度.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十二章 磁介质中的磁场(12-1)介质的磁化.ppt
- 《物理实验》课程教学课件(PPT讲稿)第十二章 磁介质中的磁场(12-3)磁场强度.ppt