《神经网络 Neural Networks》课程教学资源(PPT课件讲稿)Ch 8 Artificial Neural networks

ch. 8: Artificial neural networks Introduction to Back Propagation Neural Networks bpnn By KH Wong Neural Networks Ch9
Ch. 8: Artificial Neural networks Introduction to Back Propagation Neural Networks BPNN By KH Wong Neural Networks Ch9. , ver. 9b 1

Introduction Neural Network research is are very hot a high performance classifier(multi-class Successful in handwritten optical character OCR recognition speech recognition image Random Sampling of MNIST noise removal etc ° Easy to implement 图四DB Slow in learning 085 Fast in classification Example and dataset http://yann.lecun.com/exdb/mnist/ Neural Networks Ch9
Introduction • Neural Network research is are very hot • A high performance Classifier (multi-class) • Successful in handwritten optical character OCR recognition, speech recognition, image noise removal etc. • Easy to implement – Slow in learning – Fast in classification Neural Networks Ch9. , ver. 9b 2 Example and dataset: http://yann.lecun.com/exdb/mnist/

Motivation Biological findings inspire the development of Neural net -nput→ weights >Logic function→ output Neuron(Logic function) Biological relation Input Dendrites INputs Output W=weights Human computes using a net Output https://www.ninds.nihgov/disorders/patient-caregiver-education/life-and-death-neuron Neural Networks Ch9. ver. 9b
Motivation • Biological findings inspire the development of Neural Net – Input →weights →Logic function→ output • Biological relation – Input – Dendrites – Output – Human computes using a net Neural Networks Ch9. , ver. 9b 3 X=inputs W=weights Neuron(Logic function) Output https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Life-and-Death-Neuron

Applications 家例,个人都有 人工爱机题人, ,区一开来馆 Microsoft xiaolce. Al 我理划二代人,这次 化,出有见新冠 部的日,考一下受的,在 httpiimage SVRC 20 200 net. org/challenges/LSVRC/2015, Number of object cla )机号码、作周于们 作考一一证在 Num images 养一个,占出 传,人的容机 200 categories: accordion Training Num objects airplane, ant antelope Num images 20121 dishwasher dog domestic Validatio Num objects 55502 cat dragonfly, drum dumbbell Num images 40152 , etc. Testing Num objects · Tensor flov person motorcycle 侧画湿 Car 崮一 erson Neural IycLwuIna LI. vEl, Ju
Applications • Microsoft: XiaoIce. AI • http://imagenet.org/challenges/LSVRC/2015/ – 200 categories: accordion, airplane ,ant ,antelope ….dishwasher ,dog ,domestic cat ,dragonfly ,drum ,dumbbell , etc. • Tensor flow Neural Networks Ch9. , ver. 9b 4 ILSVRC 2015 Number of object classes 200 Training Num images 456567 Num objects 478807 Validation Num images 20121 Num objects 55502 Testing Num images 40152 Num objects ---

Different types of artificial neural networks Autoencoder DNN Deep neural network & Deep learning MLP Multilayer perceptron RNN(Recurrent Neural Networks), LSTM(Long Short-term memory) RBM Restricted boltzmann machine SOM Self-organizing map Convolutional neural network cnn Fromhttps://en.wikipedia.org/wiki/artificial_neuRal_network The method discussed in this power point can be applied to many of the above n Neural Networks Ch9
Different types of artificial neural networks • Autoencoder • DNN Deep neural network & Deep learning • MLP Multilayer perceptron • RNN (Recurrent Neural Networks), LSTM (Long Short-term memory) • RBM Restricted Boltzmann machine • SOM (Self-organizing map) • Convolutional neural network CNN • From https://en.wikipedia.org/wiki/Artificial_neural_network • The method discussed in this power point can be applied to many of the above nets. Neural Networks Ch9. , ver. 9b 5

Theory of Back Propagation Neural Net (BPnn Use many samples to train the weights w)& Biases(b), so it can be used to classify an unknown input into different classes Will explain How to use it after training forward pass (classify yor the recognition of the input How to train it how to train the weights and biases ( using forward and backward passes Neural Networks Ch9, ver. 9b
Theory of Back Propagation Neural Net (BPNN) • Use many samples to train the weights (W) & Biases (b), so it can be used to classify an unknown input into different classes • Will explain – How to use it after training: forward pass (classify /or the recognition of the input ) – How to train it: how to train the weights and biases (using forward and backward passes) Neural Networks Ch9. , ver. 9b 6

Back propagation is an essential step in many artificial network designs Used to train an artificial neural network For each training example xi, a supervised ( teacher) output t; is given For each ith training sample x: X )Feed forward propagation feed x, to the neural net, obtain output y Error e, ac t-y 2)Back propagation feed e i back to net from the output side and adjust weight w (by finding Aw to minimize e Repeat 1 and 2 ) for all samples until E is o or very small Neural Networks Ch9. ver. 9b
Back propagation is an essential step in many artificial network designs • Used to train an artificial neural network • For each training example xi , a supervised (teacher) output ti is given. • For each i th training sample x: xi 1) Feed forward propagation: feed xi to the neural net, obtain output yi . Error ei |ti -yi| 2 2) Back propagation: feed ei back to net from the output side and adjust weight w (by finding ∆w) to minimize e. • Repeat 1) and 2) for all samples until E is 0 or very small. Neural Networks Ch9. , ver. 9b 7

Example: Optical character recognition OCR Training: train the system first by presenting a lot of samples with known classes to the network Random Sampling of MNIST Training up the network: 3四DB weights(W)and bias ( b) Neural net 8[5 Recognition When an image is input to the system, it will tell what character it is Neural Net Output3 =1, other outputs= Neural Networks Ch9. ver. 9b 8
Example :Optical character recognition OCR • Training: Train the system first by presenting a lot of samples with known classes to the network • Recognition: When an image is input to the system, it will tell what character it is Neural Networks Ch9. , ver. 9b 8 Neural Net Output3=‘1’, other outputs=‘0’ Neural Net Training up the network: weights (W) and bias (b)

Overview of this document Back Propagation Neural Networks bpnn) Part 1: Feed forward processing(classification or Recognition) Part 2: Back propagation(Training the network), also include forward processing backward processing and update weights Appendix A MATLAB example is explained %source http://www.mathworks.com/matlabcentral/fileexchange/19997 neural- network-for-pattern- recognition-tutorial Neural Networks Ch9. ver. 9b
Overview of this document • Back Propagation Neural Networks (BPNN) – Part 1: Feed forward processing (classification or Recognition) – Part 2: Back propagation (Training the network), also include forward processing, backward processing and update weights • Appendix: • A MATLAB example is explained • %source : http://www.mathworks.com/matlabcentral/fileexchange/19997 -neural-network-for-pattern-recognition-tutorial Neural Networks Ch9. , ver. 9b 9

Part 1(classification in action / or the Recognition process Forward pass of Back Propagation Neural Net (BPNN Assume weights(W)and bias(b) are found by training already to be discussed in part2 Neural Networks Ch9. ver. 9b
Part 1 (classification in action /or the Recognition process) Forward pass of Back Propagation Neural Net (BPNN) Assume weights (W) and bias (b) are found by training already (to be discussed in part2) Neural Networks Ch9. , ver. 9b 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第五章 运输层.ppt
- 《Web编程实用技术教程》课程教学资源(PPT课件讲稿)第5章 MFC WinSock类的编程.ppt
- 《数字图像处理》课程PPT教学课件(讲稿)第二章 图像获取、显示和表示.ppt
- 香港中文大学:《Topics in Theoretical Computer Science》课程教学资源(PPT课件讲稿)量子计算 Quantum computing.pptx
- 香港科技大学:深度学习导论(PPT讲稿)Introduction to Deep Learning.pptx
- 北京大学软件研究所:高级软件工程(PPT讲稿)云计算与平台即服务.ppt
- 合肥学院:《数据库原理与应用》课程教学资源(PPT课件)第1章 数据库系统概述(主讲:叶潮流).ppt
- 《数据库原理与应用》课程PPT教学课件(SQL Server)第9章 存储过程和触发器.ppt
- 《The C++ Programming Language》课程教学资源(PPT课件讲稿)Lecture 02 Procedure-Based Programming.ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)第七章 图.ppt
- 北京大学:《高级软件工程》课程教学资源(PPT课件讲稿)第一讲 软件与软件开发.ppt
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第二章 流密码(主讲:董庆宽).pptx
- 《Photoshop基础教程与上机指导》教学资源(PPT讲稿)第18章 扫描和修饰图像.ppt
- 中国水利水电出版社:《单片机原理及应用》课程PPT教学课件(C语言版)第8章 单片机系统扩展(主编:周国运).ppt
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 04 Memory Management.ppt
- 《网页设计》课程教学资源:课程教学大纲.doc
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第3章 图搜索与问题求解.ppt
- 清华大学:TCP and Congestion Control(1).pptx
- 清华大学:域内路由选择(PPT课件讲稿)Intra-domain routing.pptx
- 山东大学:IPv6试商用的进展和挑战(PPT讲稿,网络与信息中心:秦丰林).pptx
- PROGRAMMING METHDOLODGY AND SOFTWARE ENGINEERING(PPT讲稿)C Programming Review.ppt
- 计算机网络技术基础(PPT课件讲稿).ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 13 Matrix Factorization and Latent Semantic Indexing.ppt
- 多媒体技术及应用(PPT讲稿)多媒体音频技术.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第四章 指令系统及汇编语言程序设计(4.1-4.4).ppt
- 东南大学:《C++语言程序设计》课程教学资源(PPT课件讲稿)Chapter 13 Object-Oriented Programming - Polymorphism.ppt
- 《C++语言程序设计》课程教学资源(PPT课件)第14讲 运算符重载.ppt
- 淮阴工学院:《数据库原理》课程教学资源(PPT课件讲稿)第4章 结构化查询语言SQL.ppt
- 《计算机网络 COMPUTER NETWORKS》课程教学资源(PPT课件讲稿)Chapter 18 互联网协议 Internet Protocols(IP).ppt
- 计算机应用专业《计算机网络》教学大纲.doc
- 《计算机网络安全》课程教学资源(PPT课件讲稿)第四章 数据加密技术.ppt
- 西安培华学院:《计算机网络工程》课程教学资源(PPT课件讲稿)第1章 网络工程知识(主讲:张伟).ppt
- 对外经济贸易大学:《大学计算机基础》课程电子教案(PPT课件)第5章 PowerPoint幻灯片制作(PowerPoint 2010).pptx
- 中国地质大学(武汉):R语言入门教程(PPT讲稿).ppt
- 西南民族大学:软件需求分析与总体设计(PPT讲稿,主讲:殷锋).ppt
- 《软件测试 Software Testing》教学资源(PPT讲稿)Part 1 The Big Picture.ppt
- 系统编程工具REXX和CLIST.ppt
- 北京大学:基于信息利用的烟花算法研究(PPT讲稿)Research on Fireworks Algorithms from the Perspective of Information Utilization.pptx
- 《ARM嵌入式软件开发》课程教学资源(PPT课件讲稿)第三章 ARM体系结构及编程模型.ppt
- 《大型机系统管理技术》课程教学资源(PPT课件讲稿)第2章 大型服务器外存管理.ppt