香港科技大学:深度学习导论(PPT讲稿)Introduction to Deep Learning

香港科技大摹 UNIVERSITY OF SCIENCE AND TECHNOLOGY Introduction to Deep Learning Professor Qiang Yang
Introduction to Deep Learning Professor Qiang Yang

Outline Introduction Supervised Learning Convolutional Neural Network Sequence Modelling RNN and its extensions Unsupervised Learning Autoencoder Stacked Denoising Autoencoder Reinforcement Learning Deep reinforcement Learning Two applications: Playing Atari alphaGo
Outline • Introduction • Supervised Learning – Convolutional Neural Network – Sequence Modelling: RNN and its extensions • Unsupervised Learning – Autoencoder – Stacked DenoisingAutoencoder • Reinforcement Learning – Deep Reinforcement Learning – Two applications: Playing Atari & AlphaGo

Introduction Traditional pattern recognition models use hand crafted features and relatively simple trainable hand-crafted Simple feature Trainable outpu extractor Classifier This approach has the following limitations It is very tedious and costly to develop hand crafted features The hand-crafted features are usually highly dependents on one application, and cannot be transferred easily to other applications
Introduction • Traditional pattern recognition models use handcrafted features and relatively simple trainable classifier. • This approach has the following limitations: – It is very tedious and costly to develop handcrafted features – The hand-crafted features are usually highly dependents on one application, and cannot be transferred easily to other applications hand-crafted feature extractor “Simple” Trainable Classifier output

Deep Learning Deep learning(a k a. representation learning) seeks to learn rich hierarchical representations (i.e. features) automatically through multiple stage of feature learning process LoW-level Mid-level High-level Trainable features features features classifier output Feature visualization of convolutional net trained on ImageNet Zeiler and fergus, 2013
Deep Learning • Deep learning (a.k.a. representation learning) seeks to learn rich hierarchical representations (i.e. features) automatically through multiple stage of feature learning process. Low-level features output Mid-level features High-level features Trainable classifier Feature visualization of convolutional net trained on ImageNet (Zeiler and Fergus, 2013)

Learning hierarchical Representations OW. Mid level let High-level Trainable features classifier output features features Increasing level of abstraction Hierarchy of representations with increasing level of abstraction. Each stage is a kind of trainable nonlinear feature transform ° mage recognition Pⅸel→edge→ texton→ motif→part→ object Text Character→Word→ word group→ clause→ sentence→ story
Learning Hierarchical Representations • Hierarchy of representations with increasing level of abstraction. Each stage is a kind of trainable nonlinear feature transform • Image recognition – Pixel → edge → texton → motif → part → object • Text – Character → word → word group → clause → sentence → story Lowlevel features output Midlevel features High-level features Trainable classifier Increasing level of abstraction

The mammalian visual Cortex is Hierarchical It is good to be inspired relationships) WHAT?(Form, Color by nature, but not too O lT much MSTd MST We need to understand which details are Fatoc-deminated) important, and which details are merely the result of evolution blob Each module in Deep Retina LGN Learning transforms its M A orienta。→ Dirac Pattern :3 3d PL'sr eve input representation into Spala Bo D scan racE y c wavelength⑤ n- Cartesian t Temporal a higher-level one, in a O NGn-CatesiEn Faces high:'low way similar to human (van Essen and Gallant, 1994) cortex
The Mammalian Visual Cortex is Hierarchical • It is good to be inspired by nature, but not too much. • We need to understand which details are important, and which details are merely the result of evolution. • Each module in Deep Learning transforms its input representation into a higher-level one, in a way similar to human cortex. (van Essen and Gallant, 1994)

Supervised Learning Convolutional neural network ° Sequence Modelling Why do we need rnn? What are RNns? RNN EXtensions What can rnns can do?
Supervised Learning • Convolutional Neural Network • Sequence Modelling – Why do we need RNN? – What are RNNs? – RNN Extensions – What can RNNs can do?

Convolutional neural Network Input can have very high dimension Using a fully-connected neural network would need a large amount of parameters Inspired by the neurophysiological experiments conducted by [Hubel Wiesel 1962], CNNs are a special type of neural network whose hidden units are only connected to local receptive field. The number of parameters needed by CNNs is much smaller Example: 200X200 image so a)fully connected: 40,000 hidden units =>1.6 billion parameters b)CNn: 5X5 kernel, 100 feature maps => 2, 500 parameters
Convolutional Neural Network • Input can have very high dimension. Using a fully-connected neural network would need a large amount of parameters. • Inspired by the neurophysiological experiments conducted by [Hubel & Wiesel 1962], CNNs are a special type of neural network whose hidden units are only connected to local receptive field. The number of parameters needed by CNNs is much smaller. Example: 200x200 image a) fully connected: 40,000 hidden units => 1.6 billion parameters b) CNN: 5x5 kernel, 100 feature maps => 2,500 parameters

Three Stages of a Convolutional Layer Complex layer terminology Simple layer terminology Next layer Next layer 1. Convolution stage 2. Nonlinearity: a Convolutional Laver nonlinear transform Pooling stage Pooling layer such as rectified linear or tanh Nonlinearity Detector layer: Nonlinearity e. g. rectified linea e.g, rectified linear 3. Pooling: output a Convolution stage: Convolution layer: summary statistics Alline transform Affine transform of local input, such as max pooling and average pooling
Three Stages of a Convolutional Layer 1. Convolution stage 2. Nonlinearity: a nonlinear transform such as rectified linear or tanh 3. Pooling: output a summary statistics of local input, such as max pooling and average pooling

Convolution Operation in CNN Input: an image(2-D array)X Convolution kernel/operator(2-D array of learnable parameters):W Feature map(2-D array of processed data):s Convolution operation in 2-D domains M N 5=(x*w=∑∑x+m,+川m川 m=-Mn=-N Kernel Output bw.cx cw. dx eyfz+fy+gz·gy+hz ew. fx + gx y+1 ky . h
Convolution Operation in CNN • Input: an image (2-D array) x • Convolution kernel/operator(2-D array of learnable parameters): w • Feature map (2-D array of processed data): s • Convolution operation in 2-D domains:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学软件研究所:高级软件工程(PPT讲稿)云计算与平台即服务.ppt
- 合肥学院:《数据库原理与应用》课程教学资源(PPT课件)第1章 数据库系统概述(主讲:叶潮流).ppt
- 《数据库原理与应用》课程PPT教学课件(SQL Server)第9章 存储过程和触发器.ppt
- 《The C++ Programming Language》课程教学资源(PPT课件讲稿)Lecture 02 Procedure-Based Programming.ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)第七章 图.ppt
- 北京大学:《高级软件工程》课程教学资源(PPT课件讲稿)第一讲 软件与软件开发.ppt
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第二章 流密码(主讲:董庆宽).pptx
- 《Photoshop基础教程与上机指导》教学资源(PPT讲稿)第18章 扫描和修饰图像.ppt
- 中国水利水电出版社:《单片机原理及应用》课程PPT教学课件(C语言版)第8章 单片机系统扩展(主编:周国运).ppt
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 04 Memory Management.ppt
- 《网页设计》课程教学资源:课程教学大纲.doc
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第3章 图搜索与问题求解.ppt
- 清华大学:TCP and Congestion Control(1).pptx
- 清华大学:域内路由选择(PPT课件讲稿)Intra-domain routing.pptx
- 山东大学:IPv6试商用的进展和挑战(PPT讲稿,网络与信息中心:秦丰林).pptx
- 克里特大学:The Application of Artificial Neural Networks in Engineering and Finance.ppt
- 关键词抽取、社会标签推荐及其在社会计算中的应用.pptx
- 《数据库系统原理》课程PPT教学课件(SQLServer)第12章 并发控制.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第2章 运算方法和运算器.ppt
- 《数据科学》课程教学资源(PPT课件讲稿)第2章 数据预处理.ppt
- 香港中文大学:《Topics in Theoretical Computer Science》课程教学资源(PPT课件讲稿)量子计算 Quantum computing.pptx
- 《数字图像处理》课程PPT教学课件(讲稿)第二章 图像获取、显示和表示.ppt
- 《Web编程实用技术教程》课程教学资源(PPT课件讲稿)第5章 MFC WinSock类的编程.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第五章 运输层.ppt
- 《神经网络 Neural Networks》课程教学资源(PPT课件讲稿)Ch 8 Artificial Neural networks.pptx
- PROGRAMMING METHDOLODGY AND SOFTWARE ENGINEERING(PPT讲稿)C Programming Review.ppt
- 计算机网络技术基础(PPT课件讲稿).ppt
- 《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 13 Matrix Factorization and Latent Semantic Indexing.ppt
- 多媒体技术及应用(PPT讲稿)多媒体音频技术.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第四章 指令系统及汇编语言程序设计(4.1-4.4).ppt
- 东南大学:《C++语言程序设计》课程教学资源(PPT课件讲稿)Chapter 13 Object-Oriented Programming - Polymorphism.ppt
- 《C++语言程序设计》课程教学资源(PPT课件)第14讲 运算符重载.ppt
- 淮阴工学院:《数据库原理》课程教学资源(PPT课件讲稿)第4章 结构化查询语言SQL.ppt
- 《计算机网络 COMPUTER NETWORKS》课程教学资源(PPT课件讲稿)Chapter 18 互联网协议 Internet Protocols(IP).ppt
- 计算机应用专业《计算机网络》教学大纲.doc
- 《计算机网络安全》课程教学资源(PPT课件讲稿)第四章 数据加密技术.ppt
- 西安培华学院:《计算机网络工程》课程教学资源(PPT课件讲稿)第1章 网络工程知识(主讲:张伟).ppt
- 对外经济贸易大学:《大学计算机基础》课程电子教案(PPT课件)第5章 PowerPoint幻灯片制作(PowerPoint 2010).pptx
- 中国地质大学(武汉):R语言入门教程(PPT讲稿).ppt
- 西南民族大学:软件需求分析与总体设计(PPT讲稿,主讲:殷锋).ppt