克里特大学:The Application of Artificial Neural Networks in Engineering and Finance

The Application of Artificial Neural Networks in Engineering and Finance Nicholas christakis Department of physics University of Crete DCABES. October 2009
DCABES, October 2009 The Application of Artificial Neural Networks in Engineering and Finance Nicholas Christakis Department of Physics University of Crete

Presentation Outline Basics of artificial Neural Networks(ANNs pplication of Ann in rotorcraft aerodynamics Application of ANN in the prediction of stocks prices short-term trading DCABES. October 2009
DCABES, October 2009 Presentation Outline • Basics of Artificial Neural Networks (ANNs) • Application of ANN in rotorcraft aerodynamics • Application of ANN in the prediction of stocks prices – short-term trading

Presentation Outline Basics of Artificial Neural Networks (ANNS Application of ann in rotorcraft aerodynamics Application of ANN in the prediction of stocks prices short-term trading DCABES. October 2009
DCABES, October 2009 Presentation Outline • Basics of Artificial Neural Networks (ANNs) • Application of ANN in rotorcraft aerodynamics • Application of ANN in the prediction of stocks prices – short-term trading

Presentation Outline Basics of Artificial Neural Networks (ANNS pplication of Ann in rotorcraft aerodynamics pplication of ann in the prediction of stock prices short-term trading DCABES. October 2009
DCABES, October 2009 Presentation Outline • Basics of Artificial Neural Networks (ANNs) • Application of ANN in rotorcraft aerodynamics • Application of ANN in the prediction of stock prices – short-term trading

Basics of anns DCABES. October 2009
DCABES, October 2009 Basics of ANNs

Basics of anns ANNS: Information processing machines, inspired by the way biological nervous systems work ANNs composed of Simple processing elements(neurons Connected together working in unison to solve specific problems ANN learn by example and generalize well on unseen data detect trends that are too complex to be noticed by either humans or other computer techniques deal well with situations where the inputs are erroneous. incomplete or muzzy DCABES. October 2009
DCABES, October 2009 Basics of ANNs • ANNs: Information processing machines, inspired by the way biological nervous systems work. • ANNs composed of: – Simple processing elements (neurons) – Connected together – working in unison to solve specific problems. • ANNs – learn by example and generalize well on unseen data. – detect trends that are too complex to be noticed by either humans or other computer techniques. – deal well with situations where the inputs are erroneous, incomplete or fuzzy

Basics of anns Comparisons between Biological and Artificial Networks Human brain 100 109 neurons with 1000 connection paths dendrites)per neuron 100 10 2 interconnections sec All work in parallel 100 10 2 computations/sec Serial computer 10 computations DCABES. October 2009
DCABES, October 2009 Basics of ANNs Comparisons between Biological and Artificial Networks • Human brain – 100 109 neurons with 1000 connection paths (dendrites) per neuron 100 1012 interconnections / sec – All work in parallel 100 1012 computations/sec • Serial computer – 107 computations / sec Human brain 10 106 times faster than a serial computer

Basics of anns anns may be used as Autonomous predictive tools Pre-processors for numerical process models in order to determine unknown parameters from data sets DCABES. October 2009
DCABES, October 2009 Basics of ANNs ANNs may be used as: – Autonomous predictive tools – Pre-processors for numerical process models in order to determine unknown parameters from data sets

Basics of anns Generic Operation of ANNs Train the network with a given dataset to recognize patterns within it Decide after how many epochs(full cycles through the whole of the dataset) the network is adequately trained Network is operational for predicting(from a given set of inputs)outputs it has not been trained for Main ann characteristics Network Architecture(how the network is set up earning algorithm(how the network learns DCABES. October 2009
DCABES, October 2009 Basics of ANNs Generic Operation of ANNs ➢ Train the network with a given dataset to recognize patterns within it ➢ Decide after how many epochs (full cycles through the whole of the dataset) the network is adequately trained ➢ Network is operational for predicting (from a given set of inputs) outputs it has not been trained for Main ANN characteristics ➢ Network Architecture (how the network is set up) ➢ Learning Algorithm (how the network learns)

Basics of anns Generic layout of an ANN 3 types of layers present-input, intermediate(hidden), output ALL nodes(neurons) of a layer connected to all nodes of neighbouring layers Input layer Hidden Layers Output Layer Feed Forward network- information signal al ways propagates in the forward direction DCABES. October 2009
DCABES, October 2009 Basics of ANNs Generic layout of an ANN • 3 types of layers present-input, intermediate (hidden), output • ALL nodes (neurons) of a layer connected to ALL nodes of neighbouring layers Feed Forward network- information signal always propagates in the forward direction
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 关键词抽取、社会标签推荐及其在社会计算中的应用.pptx
- 《数据库系统原理》课程PPT教学课件(SQLServer)第12章 并发控制.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第2章 运算方法和运算器.ppt
- 《数据科学》课程教学资源(PPT课件讲稿)第2章 数据预处理.ppt
- 西安理工大学:面向主题的服务(PPT讲稿)综合集成支撑平台业务化——互联网信息化(平台、内容、服务).ppt
- 中国科学技术大学:《数据结构》课程教学资源(PPT课件讲稿)第三章 线性表.pps
- 《计算机网络》课程PPT教学课件(Windows)第09讲 DNS服务.ppt
- 《软件工程》课程教学资源(PPT课件讲稿)第12章 软件开发工具StarUML及其应用.ppt
- 西华大学:《电子商务概论》课程教学资源(PPT课件讲稿)第7章 电子商务物流.ppt
- 中国科学技术大学:《嵌入式操作系统 Embedded Operating Systems》课程教学资源(PPT课件讲稿)第六讲 死锁及其处理.ppt
- 电子科技大学:《网络安全与网络工程》课程教学资源(PPT课件讲稿)第六章 杂凑函数(主讲:聂旭云).ppt
- 某高校计算机专业课程教学大纲合集(汇编).pdf
- 上海交通大学:操作系统安全(PPT课件讲稿)操作系统安全 OS Security(邹恒明).pps
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,3rd edition)Chapter 5 Link Layer and LANs.pps
- 《计算机网络安全》课程电子教案(PPT教学课件)第一章 计算机网络安全概述.ppt
- 并发程序精化验证及其应用(PPT讲稿)Refinement Verification of Concurrent Programs and Its Applications.pptx
- 《单片机原理与其应用》课程教学资源(PPT课件讲稿)第8章 单片机的存储器的扩展.pptx
- 南京大学:模型检验(PPT课件讲稿)model checking.pptx
- 苏州大学:《中文信息处理》课程教学资源(PPT课件讲稿)第二章 汉字代码体系.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第4章 选择结构程序设计.ppt
- 山东大学:IPv6试商用的进展和挑战(PPT讲稿,网络与信息中心:秦丰林).pptx
- 清华大学:域内路由选择(PPT课件讲稿)Intra-domain routing.pptx
- 清华大学:TCP and Congestion Control(1).pptx
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第3章 图搜索与问题求解.ppt
- 《网页设计》课程教学资源:课程教学大纲.doc
- 西安电子科技大学:《操作系统 Operating Systems》课程教学资源(PPT课件讲稿)Chapter 04 Memory Management.ppt
- 中国水利水电出版社:《单片机原理及应用》课程PPT教学课件(C语言版)第8章 单片机系统扩展(主编:周国运).ppt
- 《Photoshop基础教程与上机指导》教学资源(PPT讲稿)第18章 扫描和修饰图像.ppt
- 西安电子科技大学:《现代密码学》课程教学资源(PPT课件讲稿)第二章 流密码(主讲:董庆宽).pptx
- 北京大学:《高级软件工程》课程教学资源(PPT课件讲稿)第一讲 软件与软件开发.ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)第七章 图.ppt
- 《The C++ Programming Language》课程教学资源(PPT课件讲稿)Lecture 02 Procedure-Based Programming.ppt
- 《数据库原理与应用》课程PPT教学课件(SQL Server)第9章 存储过程和触发器.ppt
- 合肥学院:《数据库原理与应用》课程教学资源(PPT课件)第1章 数据库系统概述(主讲:叶潮流).ppt
- 北京大学软件研究所:高级软件工程(PPT讲稿)云计算与平台即服务.ppt
- 香港科技大学:深度学习导论(PPT讲稿)Introduction to Deep Learning.pptx
- 香港中文大学:《Topics in Theoretical Computer Science》课程教学资源(PPT课件讲稿)量子计算 Quantum computing.pptx
- 《数字图像处理》课程PPT教学课件(讲稿)第二章 图像获取、显示和表示.ppt
- 《Web编程实用技术教程》课程教学资源(PPT课件讲稿)第5章 MFC WinSock类的编程.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第五章 运输层.ppt