《电路》(英文版)15-7 The complete response

§15-7 The compl lete response When initial energy is present in a circuit, the Laplace transform method may be used to obtain the complete response The first is the more fundamental. for it involves writing the differential equations for the network and then taking the laplace transform of those equations. Letu,0)=10V 24 ()50 cos 2tu(t)I 30U2 1 F andu2(07)=25V, F findo
§15-7 The complete response The first is the more fundamental, for it involves writing the differential equations for the network and then taking the Laplace transform of those equations. (0 ) 1 − Let =10V and =25V, find . 2 (0 ) 2 − When initial energy is present in a circuit, the Laplace transform method may be used to obtain the complete response. 1 50cos 2tu(t)V − + 2 − + − + F 48 1 F 24 1 30 20 24 2 1

20 LetD(0)=10V 24 andu,(0 )=25V 50c0s2(t) 30U2 24 findu F Solution: at the node 1: Dr +D1=0or2U2=2U1+U1(1) 24 48 at the node 2: U2-50 cos 2tu(t) 20 24 3024020 —+—D orU1=D2+32-60c0s2t()(2) Identifying U2 as the desired response, we eliminate D, and D1 by taking the derivative of (2), remembering that du(t)/dt=d(t) U2=U2+302+2×60sim2m()-606()(3)
Solution: at the node 1: 0 2 2 (1) 48 1 24 ' 2 1 1 ' 1 1 2 + = = + − or 0 24 1 20 24 30 50cos2 ( ) ' 2 2 2 1 2 + + = − + − t u t 3 60cos2 ( ) (2) 2 ' 1 2 or = + − t u t at the node 2: Identifying as the desired response, we eliminate ' 2 1 and 1 by taking the derivative of (2), remembering that du(t)/ dt = (t). 3 2 60sin2 ( ) 60 ( ) (3) ' 2 '' 2 ' 1 = + + t u t − t (0 ) 1 − Let =10V and =25V, find . 2 (0 ) 2 − 1 50cos 2tu(t)V − + 2 − + − + F 48 1 F 24 1 30 20 24 2 1

2 2U1+U U1=U2+32-60c0s2t(t)(2) U1=U2+3U2+2×60sin2(t)-606()(3) substituting() and 3)into(1), 2=22+32-60c00+u2+32+2×60s0m(0-606( 0rU2+5U2+4U2=120c0s2t(t)-120sin2m(t)+605(1) We now take the Laplace transform 120s-120×2 s22(s)-sU2(0)-U2(0)+5y2(s)-5U2(0)+42() +60 s2+4 20s-120×2 0r(S2+5s+4)V2(s)=sU2(0)+U2(0)+5U2(0)+ +60
substituting (2) and (3) into (1), 2 2 2 = + 3 2 − 60cos 2 ( ) + ' 2 tu t 3 2 60sin2 ( ) 60 ( ) ' 2 '' 2 + + t u t − t 5 4 120cos2 ( ) 120sin2 ( ) 60 ( ) 2 ' 2 '' 2 or + + = t u t − t u t + t We now take the Laplace transform, 60 4 120 120 2 ( ) (0 ) (0 ) 5 ( ) 5 (0 ) 4 ( ) 2 2 2 2 ' 2 2 2 2 + + − − − + − + = − − − s s s V s s sV s V s 60 4 120 120 2 ( 5 4) ( ) (0 ) (0 ) 5 (0 ) 2 2 ' 2 2 2 2 + + − + + = + + + − − − s s or s s V s s 2 2 (1) ' 2 = 1 +1 3 60cos 2 ( ) (2) 2 ' 1 2 = + − t u t 3 2 60sin2 ( ) 60 ( ) (3) ' 2 '' 2 ' 1 = + + t u t − t

120s-120×2 (2+5s+4)V2(s)=sU2(0)+u2(0)+5U2(0)+ s2+4 LetU2(0)=25 120s-120×2 (s2+5s+4)V2()=25s+125+U2(0)+ +60 And need a value forv2(0 This we may obtain from(1)and (2) by evaluating each term at t=0, Actually, we need use only (2)in this problem: U1=U2+3U2-60c0s2u(t)(2) (0)=U2(0)+32(0)-0 amdU2(0)=-65 120s-120×2 (s2+5s+4)2(s)=25s+125-65+ +60 s2+4 120s-120×2 =25s+120+ +4 25s+120+(120s-240)/(s2+4 (s+1)(s+4)
60 4 120 120 2 ( 5 4) ( ) (0 ) (0 ) 5 (0 ) 2 2 ' 2 2 2 2 + + − + + = + + + − − − s s s s V s s 2 (0 ) = 25 − Let 60 4 120 120 2 ( 5 4) ( ) 25 125 (0 ) 2 ' 2 2 2 + + − + + = + + + − s s s s V s s And need a value for . This we may obtain from (1) and (2) by evaluating each term at t=0 - , Actually, we need use only (2) in this problem: (0 ) ' 2 − (0 ) (0 ) 3 2 (0 ) 0 ' 1 = 2 + − − − − (0 ) 65 ' 2 = − − and 60 4 120 120 2 ( 5 4) ( ) 25 125 65 2 2 2 + + − + + = + − + s s s s V s s 4 120 120 2 25 120 2 + − = + + s s s ( 1)( 4) 25 120 (120 240)/( 4) ( ) 2 2 + + + + − + = s s s s s V s 3 60cos 2 ( ) (2) 2 ' 1 2 = + − tu t

2(s) 25s+120+(120s-240)/(2+4) (s+1)(S+4) 23/316/312s+24 s+1s+4s2+4 23/3,16/3.6-j6,6+j6 十 s+1s+4s2+4s2+4 U2()=[ 23 16 e-+0e4+12√2cos(2t-45°) 3 3
( 1)( 4) 25 120 (120 240)/( 4) ( ) 2 2 + + + + − + = s s s s s V s 4 6 6 4 6 6 4 16/ 3 1 23/ 3 2 2 + + + + − + + + + = s j s j s s t e e t u t V t t 12 2 cos(2 45 ) ( ) 3 16 3 23 ( ) 4 2 = + + − − − 4 12 24 4 16 3 1 23 3 2 + + + + + + = s s s / s /

The second technique requires each initial capacitor voltage or inductor current to be replaced by an equivalent dc source. The frequency-domain equivalent of an inductor L i(t i(0) Li(o SL i(0 u(t=L di(t) dt V(S=sLI(S)-Li(o)I(s) V(s),i(0
The second technique requires each initial capacitor voltage or inductor current to be replaced by an equivalent dc source. The frequency-domain equivalent of an inductor L: dt di t t L ( ) ( ) = ( ) ( ) (0 ) − V s = sLI s − Li s i sL V s I s ( ) (0 ) ( ) − = + i( t ) L ( ) − + t (0 ) − i ( a ) + − I( s ) sL ( ) − + V s ( b ) (0 ) − Li I( s ) ( ) sL − + V s ( c ) s i(0 ) −

The frequency-domain equivalent of a capacitor C: 一+ I(s) 1/SO U(0) C(0 U(0 1/sC (b) do(t) v(s) I(s),D(0) i(t)=C 十 1(S)=SCV(s)-C0(0) dt
The frequency-domain equivalent of a capacitor C: sC s I s V s ( ) (0 ) ( ) − = + dt d t i t C ( ) ( ) = ( ) ( ) (0 ) − I s = sCV s − C i( t ) C ( ) − + t (0 ) − ( a ) − + I( s ) ( ) − + V s ( b ) s (0 ) − 1 / sC I( s ) ( ) − + V s ( c ) (0 ) − C 1 / sC

0 20 24 24 24 ①52m0 Os 48 30 F 30 02T24F s2+4 tvi(s) 48 Solution: V2(50s 10 5 s V2( (S) s-+4 十 0 20 24+48/S30 24/s 25s+120+(120-240)/(2+4)23/3,16/3,12s+24 (s+1)(s+4) s+1s+4s2+4 23 16 u2(t=e+e+12 2t+12sin 2tu(t)v or U,(t)= 23-t16。-4t1+122cs(2t-45u() e+—e
0 24 / 25 ( ) 30 ( ) 24 48 / 10 ( ) 20 4 50 ( ) 2 2 2 2 2 = − + + + − + + − s s V s V s s s V s s s V s 4 12 24 4 16/ 3 1 23/ 3 2 + + + + + + = s s s s Solution: t e e t t u t V t t 12cos2 12sin2 ] ( ) 3 16 3 23 ( ) [ 4 2 = + + + − − ( 1)( 4) 25 120 (120 240)/( 4) ( ) 2 2 + + + + − + = s s s s s V s − + 4 50 2 s + s s 48 30 20 2 1 − + ( ) − + V s 1 s 24 s 10 s 25 − + ( ) − + V s 2 24 1 50cos 2tu(t)V − + 2 − + − + F 48 1 F 24 1 30 20 24 2 1 or t e e t u t V t t 12 2 cos(2 45 ] ( ) 3 16 3 23 ( ) [ 4 2 = + + − − −

Example 3: Find i(t)and u(t), fort>0 0.5F i(t) Solution: Vc(s)-4/s+8/3s 十 IF IF 2+2/s 4V c(s)-4/3s,Vc(s) 十 1/s 1/s 22/s8/3s I(s) 0.8-2/15 Vc(s)=+ 十 ss+1.25 s(s) ①4/3s U2(t)=(4/5-2/15e-)n(t U2(01)=4/5-2/15=2/3 Vc(s)4(2/15)s2 5s+1.25s=+ U(0)=0 1/s 36s+125 i(t)=(t)+e12u(t)4 电荷守恒1F2/3+1F2/3=1F4/3
Example 3: Find i(t) and (t), fort 0. c 0 1/ ( ) 1/ ( ) 4 / 3 2 2 / ( ) 4 / 8 / 3 + = − + + − + s Vc s s Vc s s s Vc s s s 1 25 0 8 2 15 s . / s . Vc(s) + − = + c (0 ) = 4 / 5 − 2 /15 = 2 / 3V + [ (0 ) = 0] − c s Vc s I s 1/ ( ) ( ) = i t t e u t A t ( ) 6 1 ( ) 3 2 ( ) −1.25 = + Solution: t e u t V t c ( ) (4 / 5 2 / 15 ) ( ) −1.2 5 = − − + VC (s) 2 I(s) + − 8 / 3s 1/ s − + 4 / 3s − + 4 / s 2/s 1/ s 2 i(t) − + (t) C − + 4V 1F 1F 0.5F 电荷守恒 1F2/3+ 1F2/3 =1F4/3 1.25 1 6 1 3 2 + = + 1.25 s (2/15) 5 4 + = − s s

DP: 2 (a)Draw the frequency domain circuit that is valid for the circuit shown in fig. (b)Find i(t), vc(t) andu(t).for 0. 40 l(-t)4 UL(OS2H nF TUC( 10
DP: 2 (a)Draw the frequency domain circuit that is valid for the circuit shown in Fig. (b)Find i(t), (t) and .for t>0. C (t) L u(−t)A − + (t) C i( t ) 10 t = 0 F 32 1 40 20 + − 30 V 2H − + (t) L
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《电路》(英文版)15-6 The partial-fraction-expansion.ppt
- 《电路》(英文版)15-5 Several basis theorems for the Laplace transform.ppt
- 《电路》(英文版)15-4 Laplace transform of some simple time function.ppt
- 《电路》(英文版)15-3 Convolution and circuit response in the time domain.ppt
- 《电路》(英文版)15-2 The unit-impulse function.ppt
- 《电路》(英文版)15-1 Definition of the Laplace transform.ppt
- 《电路》(英文版)14-8 Definition of the Fourier transform.ppt
- 《电路》(英文版)14-7Applications in circuit analysis.ppt
- 《电路》(英文版)14-6 Effective values and power.ppt
- 《电路》(英文版)14-5 Waveform synthesis.ppt
- 《电路》(英文版)14-4 Line spectrum.ppt
- 《电路》(英文版)14-3 Waveform symmetry.ppt
- 《电路》(英文版)14-2 Exponential Fourier series.ppt
- 《电路》(英文版)14-1 Trigonometric Fourier series.ppt
- 《电路》(英文版)13-8nic(Negative-impedance- converter(负阻抗变换器)).ppt
- 《电路》(英文版)13-7 Gyrator(回转器).ppt
- 《电路》(英文版)13-6 Interconnection of two-ports.ppt
- 《电路》(英文版)13-5 Transmission(传输) parameters.ppt
- 《电路》(英文版)13-4 Hybrid(混合) parameters.ppt
- 《电路》(英文版)13-3 Impedance parameters.ppt
- 《电路》(英文版)15-8 The transfer function(or network function).ppt
- 《电路》(英文版)16-1 Notations and definitions.ppt
- 《电路》(英文版)16-2 Incidence(关联) matrix and KCL.ppt
- 《电路》(英文版)16-3 Loop matrix and KVL.ppt
- 《电路》(英文版)16-4 Interrelationship between matrices of a G.ppt
- 《电路》(英文版)16- 55 Tellegen''s(特勒根) theorem.ppt
- 《电路》(英文版)17-1 Direct analysis methods.ppt
- 《电路》(英文版)17-2 Nodal analysis.ppt
- 《电路》(英文版)17-3 Loop analysis.ppt
- 《电路》(英文版)17-5 State variables and normal-form equations.ppt
- 《电路》(英文版)17-6 Writing a set of normal form equations.ppt
- 《电路》(英文版)18-1 Nonlinear elements.ppt
- 《电路》(英文版)18-2 Simple nonlinear resistor circuits.ppt
- 《电路》(英文版)18-3 Small signal analysis.ppt
- 《电路》(英文版)18-4 Decomposition of a circuit into linear and nonlinear parts.ppt
- 《电路》(英文版)18-5 Combination of i-v characteristics.ppt
- 《电路》(英文版)18-6 Newton-Raphson algorithm.ppt
- 《电路》(英文版)18-7 General nonlinear resistor circuit.ppt
- 《电路》(英文版)Chapter 1 Basic circuit laws and simple resistive circuit.ppt
- 《电路》(英文版)Chapter 2 General analysis of resistive circuit.ppt