中国高校课件下载中心 》 教学资源 》 大学文库

《电路》(英文版)15-8 The transfer function(or network function)

文档信息
资源类别:文库
文档格式:PPT
文档页数:4
文件大小:85.5KB
团购合买:点击进入团购
内容简介
We define transfer function H(s) as a ratio of the Laplace transform of system output (or response)(s) to the Laplace transform of the input(or forcing function)v(s) when all initial conditions are zero, then
刷新页面文档预览

8 15-8 The transfer function(or network function) H(S) We define transfer function H(s)as a ratio of the Laplace transform of system output (or response) vo(s) to the Laplace transform of the input (or forcing function) vi(s)when all initial conditions are zero. then H(S) or Vo(s)=H(svi(s) (s) when Vi(s)=l Vo(s)=H(s) and V(s)=1 U()=(t) The inverse function corresponding to the transfer function H(s)is the unit-impulse response of the circuit. h(t)=L [H(s)=L o(s=0(

§15-8 The transfer function(or network function) H(s) We define transfer function H(s) as a ratio of the Laplace transform of system output (or response) Vo (s) to the Laplace transform of the input (or forcing function) Vi (s) when all initial conditions are zero, then ( ) ( ) ( ) V s V s H s i O = or V (s) H(s)V (s) o = i when V (s) 1 V (s) H(s) i = o = and V (s) 1 (t) (t) i = i =  The inverse function corresponding to the transfer function H(s) is the unit-impulse response of the circuit. ( ) [ ( )] [ ( )] ( ) 1 1 h t L H s L V s t = = O =o − −

H(s) usually is a ratio of two polynomes containing s, by means of partial-fraction-expansion obtain H(S) N(S) D(s) S-P CB(=C1∑k|=∑ s-P i=1 815-9 The complex-frequency plane H(S) N(S) (S-x1)(S-z2)…(s-zmn) D(S) 0 (S-p1)(S-p2)…(S-Pn) Ho real number zeros P,p2… Pn poles

H(s) usually is a ratio of two polynomes containing s, by means of partial-fraction-expansion obtain = − = = n i i i s p k D s N s H s 1 ( ) ( ) ( )   = = − − = − = = n i p t i n i i i i k e s p k h t L H s L 1 1 1 1 ( ) [ ( )] [ ] §15-9 The complex-frequency plane ( )( )...( ) ( )( )...( ) ( ) ( ) ( ) 1 2 1 2 0 n m s p s p s p s z s z s z H D s N s H s − − − − − − = = H0 real number z1, z2, … zm zeros p1, p2, … pn poles

The complex frequency s=o+ja q q (s- plane)

The complex frequency s =  + j  j  j 0 (s − plane)

Example 2: Find: Z(=? 1+j5× s plane J 1+j5 j5× a) (b) (a) The pole-zero constellation of some impedance Z(s) (b)a portion of the rubber-sheet model of the magnitude of z(s) s+2 Z(s)=k s+2 (s+1-j5)(s+1+j5) or Z(s)=k s2+2s+26 J:z(0)=1,∴1=k→k=13 Z(s)=13-+2 s2+2s+26

Example 2: Find: Z(s)=? ( 1 5)( 1 5) 2 ( ) s j s j s Z s k + − + + + = 2 26 2 ( ) 2 + + + = s s s or Z s k 2 26 2 ( ) 13 2 + + +  = s s s 13 Z s 26 2 If : Z(0) = 1, 1 = k  k = (a) (b) (a) The pole-zero constellation of some impedance Z(s); (b) A portion of the rubber-sheet model of the magnitude of Z(s). j  − 2 −1+ j5 −1− j5 s plane j  −1+ j5

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档