西安电子科技大学:《数字信号处理》课程教学资源(参考资料)Pronunciation of mathematical expressions

17.2. 1999/H. Valiaho Pronunciation of mathematical expressions The pronunciations of the most common mathematical expressions are given in the list below. In general, the shortest versions are preferred (unless greater precision is necessary) 1. Lo there exists P→q p implies q/if p, then q P分q p if and only if q/p is equivalent to q/p and q are equivalent 2. Sets x∈A c belongs to A/a is an element(or a member) of A A does not belong to A/ a is not an element(or a member) of A ACB A is contained in B/A is a subset of B ad B A contains B/B is a subset of A A∩B A cap B/ A meet B/A intersection B AUB A cup B/A join B/A uNion B A\B A minus B/the difference between A and B A×B A cross B/ the cartesian product of A and B 3. Real numbers x+1 r plus one 1 a minus one x±1 a multiplied by (ar -y(a +y) a minus y, a plus y over y 5 c equals 5/. is equal to 5 ≠5 (is) not equal to 5
17.2.1999/H. V¨aliaho Pronunciation of mathematical expressions The pronunciations of the most common mathematical expressions are given in the list below. In general, the shortest versions are preferred (unless greater precision is necessary). 1. Logic ∃ there exists ∀ for all p ⇒ q p implies q / if p, then q p ⇔ q p if and only if q /p is equivalent to q / p and q are equivalent 2. Sets x ∈ A x belongs to A / x is an element (or a member) of A x ∈/ A x does not belong to A / x is not an element (or a member) of A A ⊂ B A is contained in B / A is a subset of B A ⊃ B A contains B / B is a subset of A A ∩ B A cap B / A meet B / A intersection B A ∪ B A cup B / A join B / A union B A \ B A minus B / the difference between A and B A × B A cross B / the cartesian product of A and B 3. Real numbers x + 1 x plus one x − 1 x minus one x ± 1 x plus or minus one xy xy / x multiplied by y (x − y)(x + y) x minus y, x plus y x y x over y = the equals sign x = 5 x equals 5 / x is equal to 5 x 6= 5 x (is) not equal to 5 1

≡y . r is equivalent to(or identical with) x≠y c is not equivalent to(or identical with)y ter th a is greater than or equal to y <y x≤y .r is less than or equal to y 0<x<1 zero is less than r is less than 1 0≤x≤1 zero is less than or equal to a is less than or equal to 1 mod a/ modulus a squared/a(raised) to the power 2 to the fourth/a to the power four r to the nth/a to the power n to the(power) minus n (square)root a/ the square root of a cube root( fourth root nth root(of) (x+y) r plus y all squared r over y all squared m factorial ci/a subscript i/a suffix i/a sub i the sum from i equals one to n ai/ the sum as i runs from 1 to n of the a =1 4. Linear algebra the norm(or modulus)of a OA OA/ vector OA OA OA/ the length of the segment OA 4 a ti the transpose of A A inverse/ the inverse of A
x ≡ y x is equivalent to (or identical with) y x 6≡ y x is not equivalent to (or identical with) y x > y x is greater than y x ≥ y x is greater than or equal to y x < y x is less than y x ≤ y x is less than or equal to y 0 < x < 1 zero is less than x is less than 1 0 ≤ x ≤ 1 zero is less than or equal to x is less than or equal to 1 |x| mod x / modulus x x 2 x squared / x (raised) to the power 2 x 3 x cubed x 4 x to the fourth / x to the power four x n x to the nth / x to the power n x −n x to the (power) minus n √ x (square) root x / the square root of x √3 x cube root (of) x √4 x fourth root (of) x √n x nth root (of) x (x + y) 2 x plus y all squared ³x y ´2 x over y all squared n! n factorial xˆ x hat x¯ x bar x˜ x tilde xi xi / x subscript i / x suffix i / x sub i Xn i=1 ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai 4. Linear algebra kxk the norm (or modulus) of x −−→OA OA / vector OA OA OA / the length of the segment OA AT A transpose / the transpose of A A−1 A inverse / the inverse of A 2

5. Functions f c/f of r/the function f of f:S→T a function f from S to T .c maps to y/a is sent(or mapped) to y f(a) f prime a/f dash a/ the(first)derivative of f with respect to a f"(x) f double-prime a/f double-dash .r/ the second derivative of f with respect to r f triple-prime z/f triple-dash a/ the third derivative of f with respect to f four the fourth derivative of f with respect to z af the partial(derivative) of f with respect to a1 02f the second partial(derivative) of f with respect to al the integral from zero to infinity lin the limit as approaches zero lim the limit as a approaches zero from above lim the limit as z approaches zero from below ge y log y to the base e/ log to the base e of y/ natural log(of)y In y g y to the base e/ log to the base e of y/ natural log(of)y Individual mathematicians often have their own way of pronouncing mathematical expres- sions and in many cases there is no generally accepted"correct"pronunciation Distinctions made in writing are often not made explicit in speech; thus the sounds f c may be interpreted as any of: f f(), fx, FX, FX, FX. The difference is usually made clear by the context; it is only when confusion may occur, or where he/she wishes to emphasise the point, that the mathematician will use the longer forms: f multiplied by the function f of c, f subscript a, line FX, the length of the segment FX, vector FX a difference in intonation or length of pauses)between pairs such as the following. metimes Similarly, a mathematician is unlikely to make any distinction in speech(except so +(y+ 2) and (+y)+a ar+b and Vax+b The primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science and Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have given good comments and supplements 3
5. Functions f(x) fx / f of x / the function f of x f : S → T a function f from S to T x 7→ y x maps to y / x is sent (or mapped) to y f 0 (x) f prime x / f dash x / the (first) derivative of f with respect to x f 00(x) f double–prime x / f double–dash x / the second derivative of f with respect to x f 000(x) f triple–prime x / f triple–dash x / the third derivative of f with respect to x f (4)(x) f four x / the fourth derivative of f with respect to x ∂f ∂x1 the partial (derivative) of f with respect to x1 ∂ 2f ∂x 2 1 the second partial (derivative) of f with respect to x1 Z ∞ 0 the integral from zero to infinity limx→0 the limit as x approaches zero lim x→+0 the limit as x approaches zero from above lim x→−0 the limit as x approaches zero from below loge y log y to the base e / log to the base e of y / natural log (of) y ln y log y to the base e / log to the base e of y / natural log (of) y Individual mathematicians often have their own way of pronouncing mathematical expressions and in many cases there is no generally accepted “correct” pronunciation. Distinctions made in writing are often not made explicit in speech; thus the sounds fx may be interpreted as any of: fx, f(x), fx, F X, F X, −−→F X . The difference is usually made clear by the context; it is only when confusion may occur, or where he/she wishes to emphasise the point, that the mathematician will use the longer forms: f multiplied by x, the function f of x, f subscript x, line F X, the length of the segment F X, vector F X. Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes a difference in intonation or length of pauses) between pairs such as the following: x + (y + z) and (x + y) + z √ ax + b and √ ax + b a n − 1 and a n−1 The primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science and Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have given good comments and supplements. 3
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)绪论(龙建忠).ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第四章 电路定理 4.1 叠加定理 4.2 替代定理 4.3 戴维宁定理和诺顿定理 4.4 最大功率传输定理.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第十章 含有耦合电感的电路.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第十四章 线性动态电路的复频域分析.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第十六章 二端口网络(方程和参数、等效电路、转移函数、连接、回转器和负阻抗转换器).ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第十三章 非正弦周期电流电路和信号的频谱.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第十一章 电路的频率响应.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第六章 储能元件 6.1 电容元件 6.2 电感元件 6.3 电容、电感元件的串联与并联.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第八章 相量法 8.1 复数 8.2 正弦量 8.3 相量法的基础 8.4 电路定律的相量形式.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第五章 含有运算放大器的电阻电路.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第二章 电阻电路的等效变换.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第九章 正弦稳态电路的分析.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第三章 电阻电路的一般分析.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第七章 一阶电路和二阶电路的时域分析.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(PPT课件讲稿)第一章 电路模型和电路定律.ppt
- 四川大学锦江学院:《电路理论 Theory of Circuit》课程教学资源(教学大纲).docx
- 清华大学:《数据结构习题解析》教材PDF电子版(编著:殷人昆、徐孝凯,共十章)用面向对象方法与C++语言描述.pdf
- 西安电子科技大学:《数字电子技术基础》教程配套电子教案(PPT教学课件)第9章 存储器和可编程逻辑器件.ppt
- 西安电子科技大学:《数字电子技术基础》教程配套电子教案(PPT教学课件)第8章 脉冲波形的产生与整形.ppt
- 西安电子科技大学:《数字电子技术基础》教程配套电子教案(PPT教学课件)第7章 常用集成时序逻辑器件及应用.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第三章 离散傅立叶变换DFT(1/2).ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第三章 离散傅立叶变换DFT(2/2).ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)绪论.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第二章 离散时间信号和系统的频域分析.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第一章 离散时间信号和离散时间系统.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第三章 离散 Fourier变换(DFD).ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第四章 快速傅立叶变换(FFT).ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第六章 无限脉冲响应数字滤波器的设计.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)有限脉冲响应数字滤波器的设计.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)第五章 时域离散系统的基本网络结构.ppt
- 西安电子科技大学:《数字信号处理》课程教学资源(PPT课件)序列的Z变换.ppt
- 《cdma2000介绍及网络规划》 第一章 cdma2000介绍.doc
- 《CDMA无线设计原理》 第一部分 覆盖.ppt
- 《CDMA无线设计原理》电子课件.ppt
- 北京理工大学:《电子技术(模拟电路)》课程教学资源(PPT课件讲稿)第十章 晶闸管及其应用.ppt
- 北京理工大学:《电子技术(模拟电路)》课程教学资源(PPT课件讲稿)第一章 半导体器件.ppt
- 北京理工大学:《电子技术(模拟电路)》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 北京理工大学:《电子技术(模拟电路)》课程教学资源(PPT课件讲稿)第三章 放大电路中的负反馈.ppt
- 北京理工大学:《电子技术(模拟电路)》课程教学资源(PPT课件讲稿)第四章 差动放大器与集成运算放大器.ppt
- 北京理工大学:《电子技术(模拟电路)》课程教学资源(PPT课件讲稿)第五章 线性处理器.ppt