北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第四节 线性电路的时域分析

Content C1-4: Time-domain analysis of Linear and Time- invariant Networks ( Analysis of First Order Circuit) independent source Customarily: zero-input response Yzi-> stimulation by initial value >energy storage element whose initial value is not zero zero-state response Yzs-> stimulation by independent source Customarily: zero-input network(zi): independent source=0 overall response: Y(tFYzi(t)+Yzs(t) zero-state network(zs): initial value =0 plified expression Simplified expression output output (stimulation) (response) (response)
第 ?讲: 复习 《Principles of Circuit Analysis》 Introductory Linear Circuit Analysis Lecture 3 2009.09.22 Interest Focus Persistence Originality 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Terms and diagrams of linear systems: systems circuits networks Ns Ns NL NN NL Control Station UpLink DownLink Back bone Network Optical mm-wave WDM Sources M U X D E M U X λu1 λu2 ...λuN BS1 : EDFA λu1 λu2 ...λuN User Terminal Data Down Data Up BS2 BSn Mm-wave Wireless Link Photo Detector : : : : : λd1 λd2 ...λdN ROF communication system 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Terms and diagrams of linear systems: Ns Ns NL NN NL N x(t) y(t) simplification input ( stimulation ) output (response) A τ D ∫ ∑ 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Terms of linear system N x(t) y(t) Simplified expression input (stimulation) output (response) There is two origin of input signals (stimulation): ¾independent source ¾energy storage element whose initial value is not zero Customarily: zero-input network (zi): independent source=0 zero-state network (zs): initial value =0 Ns Ns NL NN NL *** 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 output (response) the response of load circuit (v(t),i(t)) Customarily: zero-input response Yzi -> stimulation by initial value zero-state response Yzs -> stimulation by independent source overall response: Y(t)=Yzi(t)+Yzs(t) N x(t) y(t) Ns Ns NL NN NL Terms of linear system *** Simplified expression input (stimulation) output (response)

C1-4: Time-domain analysis of Linear and Time-invariant Networks Content C1-4: Time-domain analysis of Linear and Time- Example: invariant Networks ( Analysis of First Order Circuit) ndependent a dynamic state and steady state typical source signals(stimulating signal definition of initial state(initial value, initial conditions) Energy storage element whose initial value is not zero Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit V(0)=0,1 \0: zero-input network, zero-input response (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance 10, V(0)+0: zero-state network, zero-state response The complex form of clements, law and theorem The power of sinusoidal steady-state (self-study) he stability of networks, transfer functi 1-4: Time-domain analysis of Linear and Time-invariant Networks" 1-4: Time-domain analysis of Linear and Time-invariant Networks I DC signal(omitted) f(t)=A 2 sinusoidal signal(omitted) f(t)=Acos(o t+p) 2u(t-1 3 unit step signal u(t)or U(t)or I(t u(0)=? 1t20+ (Singular signal) 2u(t-1)-2u(t-2) 2u(t-2 t Switch function o12 Wrong diagram? Right diagram!! 1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks Unit step signal u(t) Unit step signal u(t 2u(t-1)-2u(t-2) 2u(t-1) >to your homework u(t)
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 C1-4: Time-domain analysis of Linear and Time-invariant Networks Independent source Energy storage element whose initial value is not zero Vc(0) =0 ,Is=0: zero-input network, zero-input response Is=0 ,Vc(0) =0: zero-state network, zero-state response Example: Is + R - t=0 C Vc V0 (t) + - IR(t) 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 1 DC signal (omitted) 2 sinusoidal signal (omitted) 3 unit step signal u(t) or U(t) or 1(t) 1 0 u(t)= t≤0- t≥0+ t 0 u(0)=? Is R t=0 IR(t) Switch function f(t) = A f(t) = Acos(ω t ) +ϕ (Singular signal) *** Wrong diagram? C1-4: Time-domain analysis of Linear and Time-invariant Networks Is R t=0 IR(t) Switch function Right diagram!!! 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 0 t 1 u(t) 0 t 2 2u(t) 0 t 2 2u(t-1) 1 0 t 2 2u(t-1)-2u(t-2) 1 2 0 t -2u(t-2) 2 + C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 0 t 1 u(t) 0 t 2 2u(t-1) 1 0 t 2 2u(t-1)-2u(t-2) 1 2 Unit step signal u(t) 0 t f(t) 0 t f(t)u(t) causal signal *** Rectangular pulse C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 0 t 1 u(t) 0 t 2 1 ? Æto your homework 3 Step signal 4 4 C1-4: Time-domain analysis of Linear and Time-invariant Networks Unit step signal u(t)

C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks 4 unit pulse (1)={ Obviously to t Expressed by u(t): P()=[(1)-(t-△ C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks unit impulse signal 5 unit impulse signal 0t≠0 0t≠0 (1) t=0 (1)= haracteristieI: 8(n=limP(o=lim a(-(I-a)=r(o characteristic 3: Sampling integral definition f(no()dt=f(o) f(o(t-to )dt=f(o) 1-4: Time-domain analysis of Linear and Time-invariant Networks"' C1-4: Time-domain analysis of Linear and Time-invariant Networks unit impulse signal Question 60={0≠0 t(t)=? t=0 integral definition 广)d=00M=1 f(t)6(t-t0)=f(t0)6(t-t0 f(od(t-to )dt=f(to)
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 ⎪ ⎩ ⎪ ⎨ ⎧ > Δ Δ < < Δ < Δ = t t t 0 1/ 0 0 0 P ∫ ∞ −∞ PΔ (t)dt = 1 4 unit pulse signal Expressed by u(t): Obviously: [ ( ) ( )] 1 ( ) − − Δ Δ PΔ t = u t u t P (t) Δ C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 5 unit impulse signal characteristic 1: ⎩ ⎨ ⎧ ∞ = ≠ = 0 0 0 ( ) t t S t ∫ ∫ ∫ + − − ∞ −∞ = = = 0 0 ( ) ( ) ( ) 1 0 0 t dt t dt t dt t t δ δ δ '( ) ( ) ( ) ( ) lim ( ) lim 0 0 u t u t u t t P t = Δ − − Δ = = Δ→ Δ Δ→ δ δ (t) *** integral definition C1-4: Time-domain analysis of Linear and Time-invariant Networks characteristic 2: 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 ⎩ ⎨ ⎧ ∞ = ≠ = 0 0 0 ( ) t t δS(tt) characteristic 3: Sampling ⎩ ⎨ ⎧ = ≠ = (0) ( ) 0 0 0 ( ) ( ) f t t t f t t δ δ ⎩ ⎨ ⎧ − = ≠ − = 0 0 0 0 0 ( ) ( ) 0 ( ) ( ) f t t t t t t t f t t t δ δ ∫− = ς ς f (t)δ (t)dt f (0) ∫ + − − = ς ς δ 0 0 ( ) ( ) ( ) 0 0 t t f t t t dt f t C1-4: Time-domain analysis of Linear and Time-invariant Networks 5 unit impulse signal 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 unit impulse signal ⎩ ⎨ ⎧ ∞ = ≠ = 0 0 0 ( ) t t S t ∫ ∫ ∫ + − − ∞ −∞ = = = 0 0 ( ) ( ) ( ) 1 0 0 t dt t dt t dt t t δ δ δ δ (t) ∫ + − − = − = − ς ς δ δ δ 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 t t f t t t dt f t f t t t f t t t Samplin g *** Question: tδ (t) = ? C1-4: Time-domain analysis of Linear and Time-invariant Networks integral definition 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 The practical impulse signal: C1-4: Time-domain analysis of Linear and Time-invariant Networks

C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks 7 unit ramp signal square wave (t)=t(1) f()=(1)-a(t-1)+l(-2)-l(t-3)+ t≥0 aw-tooth wave r(1)=l(1)+t6(1)=l(1) f(1)=r(1)-l(t-1)-(1-2)-(-3) triangular wave f(t)=r(t)-2r(t-1)+2r(t-2)-2r(t-3)+ 1-4: Time-domain analysis of Linear and Time-invariant Networks Terms of linear systems unit step response s(y) and unit impulse response h(o) Unit step response(s(t)is the response of a circuit whose input is a unit step signal, Unit impulse response(h(t))is the response 0)[(0) put is a unit impulse signal. s(t)and h(t)are both zero-state response u(t-T 8(t)=dlu(t)]/dt h(t)=d[s(t)]/dt system N Content C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time- invariant Networks DynamIc (Analysis of First Order Circuit) a dynamic state and steady state lOV typical source signals(stimulating signal) 10v(R R definition of initial state(initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit Complex Solution to Linear and Time-invariant Circuits) X X The complex form of elements, law and theor The power of sinusoidal steady-state (self-study) The stability of networks, transfer function Static circuits (DC Static circuits
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 7 unit ramp signal ⎩ ⎨ ⎧ ≥ < = = 0 0 0 ( ) ( ) t t t r t tu t r'(t) = u(t) + tδ (t) = u(t) tgα = 1 C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 square wave saw-tooth wave triangular wave f (t) = u(t) − u(t −1) + u(t − 2) − u(t − 3) + ..... f (t) = r(t) − u(t −1) − u(t − 2) − u(t − 3) − .... f (t) = r(t) − 2r(t −1) + 2r(t − 2) − 2r(t − 3) + ... C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 A τ D ∫ ∑ system C1-4: Time-domain analysis of Linear and Time-invariant Networks ∫ ∫ δ(t) u(t) r(t) r(t) u(t) u(t −τ ) δ (t −τ ) D τ D 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 unit step response s(t) and unit impulse response h(t) Ns Ns NL NN NL Terms of linear systems Definition: Unit step response (s(t)) is the response of a circuit whose input is a unit step signal. Unit impulse response (h(t)) is the response of a circuit whose input is a unit impulse signal. N u(t) S(t) s(t) and h(t) are both zero-state response. N δ(t) h(t) δ(t)=d[u(t)]/dt h(t)=d[s(t)]/dt prove it。。。 *** Simplified expression 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Dynamic circuits? + - 10V C R + - v(t) t=t0 + - - + 1Ω 2Ω 2Ω 1V 2Ω 1V + - 10V R R + - v(t) t=t0 X X X ☺ Static circuits (DC Static circuits ) C1-4: Time-domain analysis of Linear and Time-invariant Networks

C1-4: Time-domain analysis of Linear and Time-invariant networks Cl-4: Time-domain analysis of Linear and Time-invariant Networks Dynamic circuits Sinusoidal steady-state circuit static response when sinusoidal Dynamic 10平v(+CR signals stimulate RIv( process state v(ti dynamic 1. Including dynamic elements St tatIc i State phasor method state 2. Switch the circuit Vt (complex method) Content Tea break/ C1-4: Time-domain analysis of Linear and Time invariant Networks (Analysis of First Order Circuit a dynamic state and steady state typical source signals(stimulating signal) definition of initial state(initial value, initial conditions) Time-domain analysis of dynamic circuits ( Complex Solution to Linear and Time-invariant Circuits) and admitance The complex form of clements, law and theorem The power of sinusoidal steady-state (self-study) The stability of transfer functon 1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks initial state(initial value, initial conditions) the state of network at t=t+ The state of network at t". (or ac)(steady state): When the dvnamic circu to steady state. there is no exchange of electromagnetic energy open a the inductance means short circuit. That is: v,(tFi(4-0 Static Static The determination of state state initial state→ ules for switching: If the cireuit is switched at t-t and the vdt)and i(t) are continuous while switching. That is: vdt. C 1. According to rules for switching 2. According to KCL and KvL
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Dynamic circuits t0 t v(t) Dynamic process Static state switch + - 10V C R + - v(t) t=t0 1. Including dynamic elements 2. Switch the circuit *** C1-4: Time-domain analysis of Linear and Time-invariant Networks Static state 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 t0 t v(t) + - C R L cos(ωt) + - Sinusoidal steady-state circuit -- static response when sinusoidal signals stimulate. *** i(t) v(t) phasor method (complex method) VR(jω) Ii(jω) V(jω) C1-4: Time-domain analysis of Linear and Time-invariant Networks Static state Dynamic process switch Static state 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Tea break! Tea break! 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Static state initial state (initial value, initial conditions) : the state of network at t=t0+ + - 10V C R + - v(t) t0 t=t0 t t=t0- t=t0+ v(t) The determination of initial stateÆ C1-4: Time-domain analysis of Linear and Time-invariant Networks switch Dynamic process Static state 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 + - 10V C R + - v(t) t=t0 The state of network at t=t0-(or ∝)(steady state): When the dynamic circuit comes to steady state, there is no exchange of electromagnetic energy. The capacitance means open circuit. And the inductance means short circuit. That is: vL(t0-)= ic(t0-)=0 The determination of initial state: 1。According to Rules for switching 2。 According to KCL and KVL Rules for switching: If the circuit is switched at t=t0, and the current of capacitance/ the voltage of inductance is limited, the vC(t) and iL(t) are continuous while switching. That is: vc(t0- )=vc(t0+) ,i L(t0-)=iL(t0+) C1-4: Time-domain analysis of Linear and Time-invariant Networks

C1-4: Time-domain analysis of Linear and Time-invariant Networks Content C1-4: Time-domain analysis of Linear and Time- When te ( Analysis of First Order Circuit) lR(0-)=0 a dynamic state and steady state typical source signals(stimulating signal) When t=t,+ definition of initial state(initial value, initial conditions) Time-domain analysis of dynamic circuits V(0+=V0-)=V C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits lg(0+)=V(0+)R=V Complex method and phasor method, impedance and admittance The complex form of clements, law and theorem The power of sinusoidal steady-state (self-study) he stability of networks, transfer functi 1-4: Time-domain analysis of Linear and Time-invariant Networks 1-4: Time-domain analysis of Linear and Time-invariant Networks Time-domain analysis of first order dynamic circuits Time-domain analysis of first order dynamic circuits Establish equation. t20+ rt (1)=Ri() Determination of initial state hen r-ta (s d+i(0=l -order differential equation with constant The capacitance means open cireuit And the inductance means short circuit coefficients. = Independent dynamic elements 0-=Va,(0-=0 f(0+)=。/R When 9 According to Rules for switching rdt Fv(L),i(te)i(t, 3. Solution foundations of mathematics t 9 According to KCL, KVL, VCR Solution of first-order differential equations with constant v(0+)=V此0+=VR coefficients (general solution, specifie solution) 1-4: Time-domain analysis of Linear and Time-invariant Networks Cl-4: Time-domain analysis of Linear and Time-invariant Networks Time-domain analysis of first order dynamic circuits VaR 3. solution l0(1-e-") Characteristic equation )=e"+Rl-c") +f()=l Characteristic Value: S=-I/RCE-1/T i(0+)=V/R Definition: time constant T eRO D> equals to t≥0+ ematical expression i(0)= +l0( )=e"+l0(1-e (t20+)
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Example: When t=t0- Vc(0-)= V0 IR(0-)= 0 When t=t0+ Is R Vc(0-) + - IR(t) Vc(0+)= Vc(0-)= V0 IR(0+)= Vc(0+)/R= V0/R Is + R - t=0 C Vc V0 (t) + - IR(t) C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Time-domain analysis of first order dynamic circuits I0 R + Vc(t) - Vc(0)=V0 t≥0+ i(t) When t=t0-(steady state) Æ The capacitance means open circuit. And the inductance means short circuit. vc(0-)=V0 ,i(0-)=0 When t=t0+ Æ According to Rules for switching vc(t0+)=vc(t0-),i L(t0+)=iL(t0-) Æ According to KCL,KVL,VCR 1.Determination of initial state: Vc(0+)=V0 i(0+)= V0/R Let Is =I0 Is + R - C Vc V0 (t) t=0 i(t) C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 R + Vc(t) - Vc(0)=V0 t≥0+ i(t) 2. Establish equation: dt dV t I i t C V t Ri t c c ( ) ( ) ( ) ( ) 0 = + = foundations of mathematics : Solution of first-order differential equations with constant coefficients (general solution, specific solution) i V R i t I dt di t RC (0 ) / ( ) ( ) 0 0 + = + = 3.Solution: I0 ?-order differential equation with constant coefficients. = ? Independent dynamic elements C1-4: Time-domain analysis of Linear and Time-invariant Networks Time-domain analysis of first order dynamic circuits 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 i V R i t I dt di t RC (0 ) / ( ) ( ) 0 0 + = + = general solution Characteristic equation: RCS+1=0 Characteristic Value: S=-1/RC=-1/τ Definition: time constant τ=RC st i(t) = Ke ( ) (1 ) / 0 0 t /τ t τ e I e R V i t − − = + − specific solution 0 i(t) = I 0 i ( t ) Ke I st solution = + I0 R + Vc(t) - Vc(0)=V0 t≥0+ i(t) (t≥0+) C1-4: Time-domain analysis of Linear and Time-invariant Networks Time-domain analysis of first order dynamic circuits 3.solution: 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − t>0 equals to t≥0+ ( ) (1 ) ( ) / 0 0 / e I e u t R V i t t t ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = + − − τ − τ t≥0- mathematical expression of solutionÆ Analysis 1:how to express the response at t=0 I0 RI0 *** C1-4: Time-domain analysis of Linear and Time-invariant Networks

C1-4: Time-domain analysis of Linear and Time-invariant Networks 1-4: Time-domain analysis of Linear and Time-invariant Networks Time-domain analysis of first order dynamic circuits it 0(1-e-) v(0+)=V。0+)=VR Analysis 2t about time )(c2 τ’ s dimension:se Determining the t discharging process of circuits p:(n)=le"+Rl1-e")(p>0) 4T,Ⅴ(=V/e=1.84%V ()=[ne"+l(l-e")jp(t) (20) 2()=loe+R(1-e-) general engineering purposes, if f4 TsT, discharging is over. C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Netw 00)=e"+la (1) e:+la(l-e v(=loe+Ro(l-e) v (n)=voe+Rlo(l-e) Analvsis 2t about time constant t Analysis 3t about the natural frequency of network: Ts dimension: second (s) 0 Determining the time of discharging process of circuits 8=-1/T, which has a dimension of frequency parameters, we call it the natural frequency of network. steady state steady state Switch C1-4: Time-domain analysis of Linear and Time-invariant Networks Cl-4: Time-domain analysis of Linear and Time-invariant Networks VaR v(=Ve/+Rl,(1-e-) ve()=loew/t Analysis 4: Analysis 5: Three-element method of first order circuits (TEM) ()=(6-R 0→(0+)=R,x)=c esponse 2()→FQ+)=la,F()=R,e the stimulation, it is forced by destination Time constant T TEM: when V.RIo no transient state?(attention: the network changed when y()=Dy(0+)-y(∞)"+y(∞) i the cireuit is switched)
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Is + R - C + Vc(t) - V0 t=0 i(t) I0 R + Vc(t) - t≥0+ i(t) t≥0+ Vc(0+)=V0 i(0+)= V0/R Let Is =I0 ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − 0 t Vc(t) V0 0 t i(t) V0/R I0 RI0 (t≥0+) (t>0) 0 / / 0 / / 0 0 ( ) [ (1 )] ( ) ( ) (1 ) t t t t c V it e I e ut R v t V e RI e τ τ τ τ − − − − = +− = +− (t≥0) or or *** C1-4: Time-domain analysis of Linear and Time-invariant Networks Time-domain analysis of first order dynamic circuits 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI Analysis 2: about time constant τ 0 τ’s dimension: second (s) Determining the time of discharging process of circuits. When t=τ, Vc(t)=V0/e=36.8% V0 t=4τ, Vc(t)=V0 /e4=1.84% V0 t=5τ, Vc(t)=V0 /e5=0.68% V0 For general engineering purposes, if t=4τ~5τ, discharging is over. τ τ C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI0 t0 t Dynamic state steady state steady state Switch t0+5τ τ τ *** C1-4: Time-domain analysis of Linear and Time-invariant Networks Analysis 2: about time constant τ τ’s dimension: second (s) Determining the time of discharging process of circuits. 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI0 s=-1/τ, which has a dimension of frequency. Because s is determined by network’s structure and parameters, we call it the natural frequency of network. Analysis 3:about the natural frequency of network: s τ τ *** C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI0 Analysis 4: steady-state or transient response 0 / 0 0 0 / 0 0 ( ) ( ) ( ) ( ) v t V RI e RI I e I R V i t t c t = − + = − + − − τ τ Transient response Steady-state response Special solution: is related to the stimulation, it is forced by the outer source. General solution: is related to the network’s structure and elements’ parameter, it is determined by the network’s nature characteristics. τ τ Q: when V0=RI0, no transient state? (attention: the network changed when the circuit is switched) C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI Analysis 5:Three-element method 0 of first order circuits (TEM) τ τ / 0 0 / 0 0 ( ) (0 ) , ( ) , ( ) (0 ) , ( ) , t c c c t V t V V V RI e i I e R V i t i − − → + = ∞ = → + = ∞ = TEM: Starting point destination destination Time constant τ e-t/τ *** ( ) [ (0 ) ( )] ( ) / = + − ∞ + ∞ − y t y y e y t τ C1-4: Time-domain analysis of Linear and Time-invariant Networks Starting point

Cl-4: Time-domain analysis of Linear and Time-invariant Network 1-4: Time-domain analysis of Linear and Time-invariant Networks diflerential circuit k ()=le“4+(1 Analysis 6t ch dischanging v1(t) v。(t) Overall response: Y(tFYzi(t)+ Yzs(t) C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Netw Analysis 8: Q: the v(=loe+Ro(l-e) Analvsis 7: According to definition, let i(0=Ae/ unit-step response (n=u(n), then: Io=l,o=0 o 1+R·J Response ofrectangular signal oi let:s=lo cos(or)=Re(/) Ealer's formula: ee=cos e ising 口a()=Re(e-) C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-s: Analysis of sinusoidal Steady-state Circuit (phasor method)o he differential equations for the circuit which has N independent dynamie (t) Analysis 8: Q: the steady- When input is x()=Aoee' i ene (e)"+an1 d'mi(n d"(oe) Fw)=I/HGw) Yw) XGw) o)"·le"=(a)yw(t) X(O)Hgo ()=L当O Y(jo)Fujo v(D)=joL·(1) v() steady-state circuit steady-state circuit m=(
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 TEM R + - V1 V2 + - C V 0 t 10τ V 0 t 0.5τ Vi(t) Vo(t) + + - - t Vi (t) Vo(t) changing dischanging 1 5τ “differential circuit” C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI Analysis 6: 0 Overall response: Y(t)=Yzi(t)+Yzs(t) Zero-input response Yzi(t) Zero-state response Yzs(t) C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 I0 R + Vc(t) - Vc(0)=V0 0 t Vc(t) V0 t≥0+ i(t) 0 t i(t) V0/R ( ) (1 ) ( ) (1 ) / 0 / 0 / 0 0 / τ τ τ τ t t c t t v t V e RI e e I e R V i t − − − − = + − = + − I0 RI Analysis 7: 0 unit-step response According to definition, let: ( ) (1 ) ( ) / i t e u t −t τ = − 0 1 2 t ( ) 2[(1 ) ( 1) (1 ) ( 2)] ( 1)/ ( 2)/ = − − − − − − − − − i t e u t e u t t τ t τ *** Response of rectangular signal or stair-step signal? is (t) = u(t),then:I0 =1,V0 = 0 i (t) s solution 2 i (t) = 2[u(t −1) − u(t − 2)] s C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Special solution at steady state j t i t Ae ω ( ) = j t j t j t RC j Ae Ae I e ω ω ω ω + = 0 • • R j C I A + • ω = 1 0 Is R + Vc(t) - Vc(0)=0 t≥0+ i(t) i t Is dt di t RC + ( ) = ( ) Euler's formula : ejθ =cosθ+jsinθ cos( ) Re( ) 0 0 j t Is I t I e ω let: = ω = ( ) Re( ) j t i t Ae ω = Algebra solution differential *** Analysis 8:Q: the steadystate response of j t Is I e ω = 0 C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 dt dv t i t C dt di t v t L ( ) ( ) ( ) ( ) = = ( ) ( ) ( ) ( ) i t j C v t v t j L i t = • = • ω ω Is R + Vc(t) - Vc(0)=0 t≥0+ i(t) i t Is dt di t RC + ( ) = ( ) ( ) ( ) ( ) 0 0 j I e j i t dt d I e dt di t j t j t = = ω • = ω • ω ω ( ) ( ) ( ) ( ) ( ) 0 0 ( ) ( ) j I e j i t dt d I e dt d i t n j t n n n j t n n = = ω • = ω • ω ω Analysis of sinusoidal steady-state circuit phasor method (complex method) C1-4: Time-domain analysis of Linear and Time-invariant Networks Analysis 8:Q: the steadystate response of j t Is I e ω = 0 differential 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 ( ... ) ( ) ( ) 1 1 0 ( 1) 1 ( ) a y t x t dt d a dt d a dt d a n n n n n n + + + + = − − − When input is , the zero-state response is j j t x t A e e ϕ0 ω 0 ( ) = j t j j t n j n n n a j a j a j a Y e e A e e ϕ y ω ϕ ω ω ω ω 0 0 0 0 1 1 1 1 ( ( ) + ( ) +...+ ( ) + ) = − − j t j y t Y e e ϕ y ω 0 ( ) = The differential equations for the circuit which has N independent dynamic elements: C1-5: Analysis of sinusoidal Steady-state Circuit (phasor method) Let: F(jw)=1/H(jw) Y(jw) X(jw) So: ( ) ( ) ( )( ) ( ) X j Yj Xj Hj F j ω ω ω ω ω = = *** Analysis of sinusoidal steady-state circuit phasor method (complex method)

C1-4: Time-domain analysis of Linear and Time- invariant Networks (Analysis of First Order Circuit) a dynamic state and steady state typical source signals(stimulating definition of initial state (initial value, initial Time-domain analysis of dynamic C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invarant CComplex method and phasor method, impedance and admi The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study The stability of networks, transfer function
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Coming next … C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第二节 常见电路元件及约束方程(2/2)第三节 线性二端(单口)网络的等效.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第一节 线性电路分析导论 第二节 常见电路元件及约束方程(1/2).pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第八章 二极管电路 §8-4 稳压管与稳压电路 第九章 双极晶体管电路 §9-1 双极晶体管的静态特性 §9-2 晶体三极管放大电路之组成 §9-3 晶体三极管的小信号模型.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第十章 晶体三极管放大电路基本组态 §10-2 共发射极组态(2/2)§10-3 共集电极组态和共基极组态 §10-4 简单多级放大电路分析.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第十章 晶体三极管放大电路基本组态 §10-1 晶体三极管的组态 §10-2 共发射极组态(1/2).pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第八章 二极管电路 §8-1 半导体基础知识(了解)§8-2 二极管的特性 §8-3 二极管开关与整流电路.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第七章 链式网络中的传播过程 §7-3 均匀无耗传输线的阶跃响应 §7-4 分布参量元件.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第六章 双端口网络的分析方法 §6-5 集成差分放大器(2/2)第七章 链式网络中的传播过程 §7-1 对称网络的传输特性 §7-2 均匀无耗传输线上的波动.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第六章 双端口网络的分析方法 §6-3 有端接的双端口网络 §6-4 双端口网络的链联 §6-5 集成差分放大器(1/2).pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第六章 双端口网络的分析方法 §6-1 双端口网络的参量和联接(2/2)§6-2 无源双端口网络的等效网络.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第六章 双端口网络的分析方法 §6-1 双端口网络的参量和联接(1/2).pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第五章 网络定理 §5-5 置换定理 §5-6 戴维宁定理和诺顿定理 §5-7 二端网络的分析方法.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第五章 网络定理 §5-1 唯一性定理 §5-2 叠加定理 §5-3 互易定理 §5-4 特勒根定理 §5-5 置换定理.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第四章 网络拓扑分析方法 §4-5 网络拓扑分析方法.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第四章 线性网络分析基础 §4-2 支路电流法和支路点压法 §4-3 节点电压法 §4-4 回路电流法.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第三章 信号的频谱 §3-4 信号通过常参量线性电路 §3-5 采样定理 第四章 网络拓扑分析方法 §4-1 网络拓扑分析的基本知识.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第三章 信号的频谱 §3-2 非周期信号的频谱密度 §3-3 频谱分析的基本定理.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第二章 信号的频谱 §3-1 周期信号的频谱.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第二章 线性电路的s域解法 §2-2 线性电路的s域解法.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第二章 线性电路的s域解法 §2-1 拉普拉斯变换.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第五节 正弦稳态、复数分析法 第六节 滤波器.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第二章 拉普拉斯分析 第一节 拉氏变换.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第二章 拉普拉斯分析 第二节 用拉普拉斯变换求解电路问题.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第三章 傅立叶分析 第一节 傅里叶级数.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第三章 傅立叶分析 第二节 傅立叶变换.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第一节 线性网络分析基础.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第二节 线性网络分析方法.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第三节 网络定理.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第四节 大网络分析方法概述.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第六章 双口网络 第一节 双口网络参量与联结.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第六章 双口网络 第二节 双口网络Y, H,G,A 参量、有端接的双口网络.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第六章 双口网络 第三节 有端接的双口网络.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第七章 链式网络与传输线 第一节 传输线.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第七章 链式网络与传输线 第二节:链式网络与传输线.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第七章 链式网络与传输线 第三节 均匀无耗传输线.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(教学大纲)数字集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(教学大纲)模拟集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(教学大纲)集成电路设计实习.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(考试试卷)数字集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(考试试卷)模拟集成电路原理与设计.pdf