北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第六章 双口网络 第三节 有端接的双口网络

Chapter 6: Two-port Network 6-3 Two-port network which h 《 Principles of Circuit Analysis》 Chapter6: Two-port Network Analysis 564Applications of two-port Lecture 3 Operational amplifier circuit analysis 2, Triode circuit 2009-11-26 57-1Transmission Line: Some history -hai yerk and T -3unifmrm LosslesS nn Line (kry Article If of circuit analysis--Applications Article If of circuit analysis- Applications Circuit analysis methods operational tpmm Complex method, Transf domain methods, network uniform lossless transmission line analysis, network theorem. diode cireuit Method categor Superposition, decomposition, equivalence equation, diagram, equivalence domain methods, network triode cireuit analysis, network theorem, equivalence operational amplifier(OP): Integrated operational amplifier device device circuit(IC) integrated cireuit(LsI device eireuit(IC) 1904 op-amp, de fined as a general-purpose, DC-coupled, US Patent 2, 401779"Summing Amplifier"filed by Ka operational amplifier aree vacuum tubes to achieve a gai A three-terminal(? two-port electronic integrated module. Its characteristic is similar to voltage. controlled voltage source. Its basic being liberally used in the M9 artillery director designed function is to realize the amplification of differential signal hear 90%)that would not have been possible otherwis
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 第 ?讲: 复习 北京大学 北京大学 《Principles of Circuit Analysis》 Chapter6: Two-port Network Analysis Lecture 3 2009-11-26 Interest Focus Persistence Originality 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 §6-1 Parameters and connections of two-port network §6-2 Z-parameters, Y-parameters, H-parameters, G-parameters, Aparameters §6-3 Two-port network which has termipoints input impedance, output impedance, transfer functions §6-4 Applications of two-port network analysis 1。Operational amplifier circuit analysis 2。Triode circuit analysis §7-1 Transmission Line: Some history §7-2 Chain Network and Transmission Line (conceptions) §7-3 Uniform Lossless Transmission Line (key points) §7-4 step response of transmission line Chapter 6: Two-port Network 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Article Ⅱ of circuit analysis --- Applications Complex method, Transform domain methods, network analysis, network theorem, equivalence Circuit analysis methods Method category: Æsuperposition, decomposition, equivalence Æequation, diagram, equivalence 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 # operational amplifier # uniform lossless transmission line # diode circuit # triode circuit Equivalence, G-parameter Circuit analysis, Aparameter piecewise linearity, Equivalent modeling H-parameter, Z-parameter Article Ⅱ of circuit analysis --- Applications Complex method, Transform domain methods, network analysis, network theorem, equivalence 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 operational amplifier (OP): vacuum device 1904 semiconductor device 1948 1959 integrated circuit (IC) 1974 large scale integrated circuit (LSI) An op-amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback amplifier, is first found in US Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell labs in 1941. This design used three vacuum tubes to achieve a gain of 90dB and operated on voltage rails of ±350V. In contrast to modern day op-amps, it had a single inverting input and an output instead of the modern two differential inputs where one is inverting and the other is not. Throughout World War II, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that would not have been possible otherwise. 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Integrated operational amplifier: operational amplifier: A three-terminal (Æ two-port) electronic integrated module. Its characteristic is similar to voltagecontrolled voltage source. Its basic function is to realize the amplification of differential signal. vacuum device 1904 semiconductor device 1948 1959 integrated circuit (IC) 1974 large scale integrated circuit (LSI)

Integrated operational amplifier: three-terminal ( two-port) Symbol and equivalent cireuit of integrated operational ampl v L>.=AV,=A(V,V) Symbol of oF Symbol 2 eson Symbol and equivalent cireuit of integrated operational amplifier: Symbol and equivalent cireuit of integrated operational amplifier: v。=AV=A(v,-v) v。=Av=A(v.-v) e.g. @it’ s ease AVi V V -AV The characteristics of ideal op-amps Applications for the integrated op-amps: inverting amplifier cireuit z=∞V。=AV=A(.-V) Voltage transfer function: H=V2/VI a method 1: equivalent cireuit avirtual open From the KCL equation at node @. Since Z oo, it is almost op uit for the two input And 1, R0 aVirtual short use the short cireuit to ua1+A)2,+z ① Since A→∞,V≈0,orV≈V avirtual grounding dv, AV2 vDz, function H-V,transfer We can get the volt And the input impedance If one the two input is grounding, since V0, the other input terminal is grounding virtually z1 V,/Z
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Integrated operational amplifier: three-terminal (two-port) + - V+ V- Vo + - V+ V- Vo Vi = (V+ − V−) + - V+ V- Vo Symbol of OP - Vi + + - V+ V- Vo Symbol 2 + - A + A 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Symbol and equivalent circuit of integrated operational amplifier: Vi Vo Uopp -Uopp linear region Negative saturation region positive saturation region + - V+ V- Vo - Vi + + - Vo = AVi = A(V+ − V−) open loop gain A + - Vo - - Vi + + + - AVi 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 + - V+ V- Vo + - Vo + - + - - Vi + AVi Vo - - + - Vi + + Zi Ro AVi Vo = AVi = A(V+ − V−) Ideal op-amp Zi =∞ Ro=0 A→∞ - Vi + A Symbol and equivalent circuit of integrated operational amplifier: 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 + - V+ V- Vo Vo = AVi = A(V+ − V−) e.g.: - Vi + V2 + - + - Zf Vs + - ZL V1 V2 + - Vs + - ZL V1 + - -AV1 Zf A ☺ it’s easy~ ☺ Symbol and equivalent circuit of integrated operational amplifier: *** 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Virtual open Virtual short Virtual grounding The characteristics of ideal op-amps + - V+ V- Vo + - Vo + - + - - Vi + AVi Vo = AVi = A(V+ − V−) - Vi + A Zi =∞ Ro=0 A→∞ Since Zi =∞, it is almost open circuit for the two input. And Ii ≈0 Can we use the short circuit to replace the input port? Since A→∞, Vi ≈0,or V+≈VIf one the two input is grounding, since Vi ≈0, the other input terminal is grounding virtually. *** 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Applications for the integrated op-amps: inverting amplifier circuit method 1: equivalent circuit - + Zf - + V1 V2 I1 I2 + - - AV1 ZS VS + - ZL ① From the KCL equation at node ①: s f f s 1 (1 A)Z Z Z V V + + = V2 + - + - Zf Vs Zs + - ZL V1 ① We can get the voltage transfer function H = V2/Vs ... (V V )/Z V Z s 1 s s in = − = And the input impedance Voltage transfer function: Input impedance: H = V2/Vs Zin V2 = - AV1

oltage transfer function: H=V,/V a method 2: using the Input impedance: Z v nz, virtual grounding, which m rom the KCL equation at node O v1≈0工≈0 Z,V V=-AV (1+A)z I When A zhn≈zs closed loop gain: Ao=-Zf/Zs Applications for the integrated op-amps: Non-inverting amplifier circuits Applications for the integrated op amps: analog operation (Differential and proporti OUsing superposition theorem For the positive side signal V, the gain is: r. Then, virtualgpen For the negative side signal Vr the gain is A。=v。/V,=1 AV Applications for the integrated op-amps Applications for the integrated opamps: analog operation (sum) Form Vi1: V IR OR Form v 9v。=la+a2=(n+Ya) t Form 2R,、R/2 eg2:pp329,10.l6: v。/v R,R3 R,(n-1 3
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 - + Zf - + V1 V2 I1 I2 + - - AV1 ZS VS + - ZL ① 2 1 s f f s 1 V AV (1 A)Z Z Z V V = − + + = V2 + - + - Zf Vs Zs + - ZL V1 ① When A→∞, ; Z -Z H s f ≈ Zin ≈ Zs closed loop gain: Ao=-Zf/Zs Applications for the integrated op-amps: inverting amplifier circuit Voltage transfer function: Input impedance: H = V2/Vs Zin From the KCL equation at node ①: 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 method 2: using the characteristic of op-amps Since the positive electrode is grounding, the negative electrode ① is virtual grounding, which means: We can easily get: s f s 2 O Z -Z V V A = ≈ Zin ≈ Zs V2 + - + - Zf Vs Zs + - ZL V1 ① V1 ≈ 0 I- ≈ 0 f 2 1 s s 1 Z -V I Z V I = = Applications for the integrated op-amps: inverting amplifier circuit *** 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Virtual short V- ≈ V+ = Vs Then, virtual open o f - V Z Z Z V + = Z Z A V /V 1 f o = o s = + So Z in ≈ ∞ and Vo + - + - Z Zf - Vs + Applications for the integrated op-amps: Non-inverting amplifier circuit*** 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Applications for the integrated op-amps: analog operation (Differential and proportion) Using superposition theorem Vo + - + - Z Zf - V1 + - + Z’ Zf V2 ’ For the positive side signal V2, the gain is: ) Z Z (1 Z' Z Z A f ' f ' f 0 + + = + For the negative side signal V1, the gain is: Z Z A f 0 = − − The whole output is: V A V A V ... 0 = o 2 + o 1 = + − 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Applications for the integrated op-amps Vo + - + - Rf - V2 + V3 R2 V1 R1 Rf3 R3 - + - + 3 3 f3 f3 1 2 f 2 2 f 1 1 f 0 V R R R R R R V R R V R R V + = − − + + ) // (1 e.g.2: pp329,10.16: 3 1 1 3 0 i in R -(n-1)R R R V / V = n, R = e.g.1: 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Form Vi1: So: Vo = Vo1 + Vo2 = Vi1 + Vi2 Vo + - Vi1 + - 2R1 Non-invert sum R1 Vi2 R R R - + - + V ,... 3R/2 R/2 ) R 2R V (1 i1 1 1 o1 = + Then:Vo = Vo1 + Vo2 = −(Vi1 + Vi2) Form Vi1: Vo1 = −Vi1 Form Vi2: Vo2 = −Vi2 Vo + - + - R Invert sum R Vi1 Vi2 R + - + - Applications for the integrated op-amps: analog operation (sum)

pplications for the integrated op-amps: analog operation (Integration and Di Since: Z, =1/Cs; Z=R Differen ince: Z=R; Z;=1/Cs 古So:v(s)=-V(s)/Rcs 古S0:V(s)=-Ⅵ(s)Rcs v(r)dr+v(o) VO Th (t)=RCV'(t) perty, of Laplace Transformif f(t)=F(s) f(t)=F(s) Thens Then F(s) f(t)=sF(s)-f(0.) rett÷F(s) f(t)=sF(s)-f0.) Symbol and equivalent cireuit of integrated operational amplifie v。=AV=A(v,-v) v。=Av=A(v.-v) ideal e.g. AVi V Characteristic of ideal op-amps Z:=∞V=Av=A(V Tea break/ avirtual open Since Z oo, it is almost open circuit for the two input. And 1, R0 aVirtual short[ Amalysis of op-amp circuit: Characteristic of Since A→∞,V≈0,orV≈V Homework: avirtual grounding 6-30, If one the two input is grounding, since V0, the other input terminal is grounding virtually 1028.16
北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Vo + - + + - Vi - R C Integrator Since: Zf=1/Cs; Zi =R So: Vo(s)=- Vi (s)/RCs That is: − = + ∫ τ τ t o io 0 1 V (t) V ( )d V (0) RC Applications for the integrated op-amps: analog operation (Integration and Differential) Review the Integration and Differential property of Laplace Transform: if ( ) () ( ) 0- f' t = sF s − f Then: ft Fs ( ) = ( ) ( ) ( ) s F s f t dt t 0 = ∫ 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Since:Zf=R; Zi =1/Cs So: Vo(s)=- Vi (s)RCs That is: Vo(t) = −RCV'i (t) Vo + - + Vi - + - C R Differentiator Applications for the integrated op-amps: analog operation (Integration and Differential) Review the Integration and Differential property of Laplace Transform: if () ( ) ( ) 0- f' t = sF s − f Then: ft Fs ( ) = ( ) ( ) ( ) s F s f t dt t 0 = ∫ 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 + - V+ V- Vo + - Vo + - + - - Vi + AVi Vo - - + - Vi + + Zi Ro AVi Vo = AVi = A(V+ − V−) - Vi + A *** ideal nonideal Summary Symbol and equivalent circuit of integrated operational amplifier: 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 + - V+ V- Vo Vo = AVi = A(V+ − V−) e.g.: - Vi + V2 + - + - Zf Vs + - ZL V1 V2 + - Vs + - ZL V1 + - -AV1 Zf A *** Analysis of op-amp circuit1: equivalent circuit Summary Symbol and equivalent circuit of integrated operational amplifier: 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Characteristic of ideal op-amps + - V+ V- Vo + - Vo + - + - - Vi + AVi Vo = AVi = A(V+ − V−) - Vi + A Zi =∞ Ro=0 A→∞ *** Analysis of op-amp circuit2: Characteristic of op-amps Summary Virtual open Virtual short Virtual grounding Since Zi =∞, it is almost open circuit for the two input. And Ii ≈0 Since A→∞, Vi ≈0,or V+≈VIf one the two input is grounding, since Vi ≈0, the other input terminal is grounding virtually. 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 北京大学 Tea break! Tea break! Homework: 6-30, 10-2, 8, 16 Homework: 6-30, 10-2, 8, 16
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第六章 双口网络 第二节 双口网络Y, H,G,A 参量、有端接的双口网络.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第六章 双口网络 第一节 双口网络参量与联结.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第四节 大网络分析方法概述.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第三节 网络定理.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第二节 线性网络分析方法.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第四章 网络分析方法 第一节 线性网络分析基础.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第三章 傅立叶分析 第二节 傅立叶变换.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第三章 傅立叶分析 第一节 傅里叶级数.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第二章 拉普拉斯分析 第二节 用拉普拉斯变换求解电路问题.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第二章 拉普拉斯分析 第一节 拉氏变换.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第五节 正弦稳态、复数分析法 第六节 滤波器.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第四节 线性电路的时域分析.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第二节 常见电路元件及约束方程(2/2)第三节 线性二端(单口)网络的等效.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第一章 线性电路分析基础 第一节 线性电路分析导论 第二节 常见电路元件及约束方程(1/2).pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第八章 二极管电路 §8-4 稳压管与稳压电路 第九章 双极晶体管电路 §9-1 双极晶体管的静态特性 §9-2 晶体三极管放大电路之组成 §9-3 晶体三极管的小信号模型.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第十章 晶体三极管放大电路基本组态 §10-2 共发射极组态(2/2)§10-3 共集电极组态和共基极组态 §10-4 简单多级放大电路分析.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第十章 晶体三极管放大电路基本组态 §10-1 晶体三极管的组态 §10-2 共发射极组态(1/2).pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第八章 二极管电路 §8-1 半导体基础知识(了解)§8-2 二极管的特性 §8-3 二极管开关与整流电路.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第七章 链式网络中的传播过程 §7-3 均匀无耗传输线的阶跃响应 §7-4 分布参量元件.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学资源(课件讲稿)第六章 双端口网络的分析方法 §6-5 集成差分放大器(2/2)第七章 链式网络中的传播过程 §7-1 对称网络的传输特性 §7-2 均匀无耗传输线上的波动.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第七章 链式网络与传输线 第一节 传输线.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第七章 链式网络与传输线 第二节:链式网络与传输线.pdf
- 北京大学:《电路分析原理 Circuit Analysis》课程教学课件(英文版)第七章 链式网络与传输线 第三节 均匀无耗传输线.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(教学大纲)数字集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(教学大纲)模拟集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(教学大纲)集成电路设计实习.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(考试试卷)数字集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(考试试卷)模拟集成电路原理与设计.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程教学资源(综合实验报告)集成电路设计实习.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap1 绪论及工艺原理 第一章 绪论 第二章 集成电路制作工艺 2.1.1 集成电路加工的基本操作.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap2-1 第二章 集成电路制作工艺(2.1.2-2.2.2).pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap2-2 第二章 集成电路制作工艺 2.3 寄生效应和SOI工艺.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)课堂讨论1.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap3-1 第三章 长沟道MOS器件模型.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap3-2 CMOS工艺——无源器件.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap4-1 第四章 CMOS单元电路 4.1 反相器直流特性.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap4-1 第四章 CMOS单元电路 4.10 动态逻辑电路 Domino.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap4-1 第四章 CMOS单元电路 4.11 功耗.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap4-1 第四章 CMOS单元电路 4.2 反相器瞬态特性.pdf
- 北京大学:《集成电路原理与设计 Principle of Integrated Circuits》课程电子教案(数字集成电路原理与设计)chap4-1 第四章 CMOS单元电路 4.3 反相器的设计.pdf