《Advanced Artificial Intelligence》课程PPT教学课件(高级人工智能)Lecture 3 Decision Tree

Advanced Artificial Intelligence Lecture 3: Decision tree
Advanced Artificial Intelligence Lecture 3: Decision Tree

Outline Introduction Constructing a decision Tree D3 C4.5 Regression Trees CART Gradient Boosting
Outline ▪ Introduction ▪ Constructing a Decision Tree ▪ ID3 ▪ C4.5 ▪ Regression Trees ▪ CART ▪ Gradient Boosting

Decision tree Introduction o The Decision Tree is one of the most powerful and popular classification and prediction algorithms in current use in data mining and machine learning The attractiveness of decision trees is due to the fact that in contrast to neural networks decision trees represent rules o Rules can readily be expressed so that humans can understand them or even directly used in a database access language like sQL so that records falling into a particular category may be retrieved
4 Decision Tree Introduction ⚫ The Decision Tree is one of the most powerful and popular classification and prediction algorithms in current use in data mining and machine learning. ⚫ The attractiveness of decision trees is due to the fact that, in contrast to neural networks, decision trees represent rules. ⚫ Rules can readily be expressed so that humans can understand them or even directly used in a database access language like SQL so that records falling into a particular category may be retrieved

Decision tree o a decision tree consists of nodes test for the value of a certain attribute Edges: correspond to the outcome of a test connect to the next node or leaf · Leaves: terminal nodes that predict the outcome
5 Decision Tree ⚫ A decision tree consists of • Nodes: test for the value of a certain attribute • Edges: correspond to the outcome of a test connect to the next node or leaf • Leaves: terminal nodes that predict the outcome

Decision tree Exampl e I SOLL IHR NEUES AUTO 1. Start at the root SEINEN PREIS WERT SEIN 2 2. Perform the test NEIN 3. Follow the edge corresponding to outcome FDMEURO 4. Go to 2 unless leaf 5. Predict that outcome associated with the leaf Genau das Wichtige
6 Decision Tree ⚫ Example 1. Start at the root 2. Perform the test 3. Follow the edge corresponding to outcome 4. Go to 2. unless leaf 5. Predict that outcome associated with the leaf

Decision Tree Learning In Decision Tree The training examples Learning, a new example are used for choosing is classified b appropriate tests in the submitting it to a series decision tree. Typically, of tests that determine the a tree is built from top to class label of the bottom, where tests that example. These tests are Training maximize the information organized in a gain about hierarchical structure the classification are called a decision tree selected first New Example Classification
7 Decision Tree Learning

Why Decision Tree Decision Trees To Classify To Predict Response variable has Response variable has Response variable is only two categories multiple categories continuous Use standard Linear relationships Use c4.5 Nonlinear relationships classification tree implementation between predictors between predictors and and response response Use standard Use c4.5 Regression tree implementation 8
8 Why Decision Tree ?

A Sample Task Temperature Outook Humidity Windy Play Golf? 07-05 hot sunny high false 0706 hot high true 0707 hot overcast high false yes 0709 cool rain normal false yes 07-10 cool overcast normal true 07-12 mild sunn high false 07-14 sunny normal false yes 0715 mild rain normal false yes 07-20 true yes 07-21 mild overcast high true 07-22 hot overcast normal false y 07-23 mild raIn high no 0726 cool rain normal 07-30 mild rain high false yes today cool sunny false tomorrow mild sunny normal false 9
9 A Sample Task

A Sample Task utor sunny overcast rain Humidity yes windy normal high true false ye no ye tomorrow mild sunny normal false 10
10 A Sample Task

Divide-And-Conguer Algorithms o Family of decision tree learning algorithms TDIDT: Top-Down Induction of Decision Trees O Learn trees in a Top-Down fashion divide the problem in subproblems solve each problem Basic Divide-And-Conquer Algorithm 1. select a test for root node Create branch for each possible outcome of the test 2. split instances into subsets One for each branch extending from the node 3. repeat recursively for each branch, using only instances that reach the branch 4. stop recursion for a branch if all its instances have the same class
11 Divide-And-Conquer Algorithms ⚫Family of decision tree learning algorithms • TDIDT: Top-Down Induction of Decision Trees ⚫Learn trees in a Top-Down fashion • divide the problem in subproblems • solve each problem
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Advanced Artificial Intelligence》课程PPT教学课件(高级人工智能)Lecture 5 Neural Networks.pptx
- 北京林业大学:《深度学习》课程PPT教学课件(Deep Learning)第二章 神经网络与优化方法(主讲:孙钰).pptx
- 浙江长征职业技术学院:计算机信息管理专业课程教学大纲汇编.doc
- 《电子商务概论》课程教学资源(PPT课件讲稿)第六章 电子商务支付技术.ppt
- 丽水职业技术学院:《电子商务实训》课程教学资源(PPT课件讲稿)电子商务交易模式之“B2B”——电子合同模式.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第七章 搜索结构第七章 搜索结构.ppt
- 《网络营销实务》课程教学资源(PPT课件讲稿)第二章 网络营销环境分析.ppt
- 江苏大学:《面向对象建模技术》课程教学资源(PPT课件讲稿)第2章 用例图.ppt
- 《计算机网络》课程教学大纲(适用专业:信息与计算科学).pdf
- 上海交通大学:云安全(PPT讲稿)Cloud Security.pptx
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 查找.ppt
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第2章 逻辑程序设计语言.ppt
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 3 SQL.ppt
- 中国科学技术大学:《现代密码学理论与实践》课程教学资源(PPT课件讲稿)第4章 有限域(第五版).pptx
- 清华大学:《计算机导论》课程电子教案(PPT教学课件)第3章 计算机基础知识.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第六版,PPT课件讲稿)第六章 应用层.pptx
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第6章 用数组处理批量数据.pptx
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 2 The Relational Model.ppt
- 西安电子科技大学:《Mobile Programming》课程PPT教学课件(Android Programming)Lecture 2 Intro to Java Programming.pptx
- 《计算机网络》课程教学资源(考试大纲)计算机网络考试大纲.doc
- 《Advanced Artificial Intelligence》课程PPT教学课件(高级人工智能)Lecture 6 Convolutional Neural Network.pptx
- 《操作系统》课程教学资源(PPT课件讲稿)文件管理 File Management.ppt
- 《操作系统 Operating System》课程电子教案(PPT课件讲稿)第一章 简介.ppt
- 《计算机辅助设计——Photoshop制图》课程标准.pdf
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第六章 应用层.ppt
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)第4讲 网络管理实训内容(上).pptx
- 《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第8讲 数据库恢复技术.ppt
- 新乡学院:《数据库原理》课程电子教案(PPT课件)第3章 关系数据库.ppt
- 新乡学院:《计算机网络》课程教学大纲(适用专业:信息与计算科学).pdf
- 哈尔滨工业大学:《中文信息处理》课程教学资源(PPT课件讲稿)句法分析(张宇).ppt
- 隐马尔科夫模型和词性标注(PPT课件讲稿).ppt
- 有限元分析 ANSYS:Modeling Turbulent Flows(PPT讲稿)Introductory FLUENT Training.ppt
- Fluent:《GAMBIT建模教程》教学资源(PPT讲稿)Geometry Operations in GAMBIT.ppt
- 香港科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件)Chapter 1 Introduction of computer networking.ppsx
- FairCloud:Sharing the Network in Cloud Computing.pptx
- Incorporating Structured World Knowledge into Unstructured Documents via——Heterogeneous Information Networks.pptx
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 07 Network Security.ppt
- C++ Review.ppt
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 3 Transport Layer.ppt
- 《Java编程导论》课程教学资源(PPT课件讲稿)Chapter 8 Strings and Text I/O.ppt