《Advanced Artificial Intelligence》课程PPT教学课件(高级人工智能)Lecture 6 Convolutional Neural Network

Advanced Artificial Intelligence Lecture 6: Convolutional Neural network
Advanced Artificial Intelligence Lecture 6: Convolutional Neural Network

Outline Convolutional neural Network Convolution Max Pooling CNN Forward Propagation CNN Backward Propagation CNN Architectures ■ LeNet-5、 AlexNet VGGNet GooqLeNet ■ ResNet
2 Outline ▪ Convolutional Neural Network ▪ Convolution ▪ Max Pooling ▪ CNN Forward Propagation ▪ CNN Backward Propagation ▪ CNN Architectures ▪ LeNet-5 、 AlexNet ▪ VGGNet ▪ GoogLeNet ▪ ResNet

[Zeiler, M. D, ECCV 2014 Why cnn for Image? Represente d as pixels The most basic Use 1st layer as module to Use 2nd layer as classifiers build classifiers module Can the network be simplified by considering the properties of images? Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
3 Why CNN for Image? [Zeiler, M. D., ECCV 2014] Can the network be simplified by considering the properties of images? 1 x 2 x … … Nx … … … … … … … … … … … … The most basic classifiers Use 1st layer as module to build classifiers Use 2nd layer as module …… Represente d as pixels Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

Why cnn for Image? Some patterns are much smaller than the whole Image Aneuron does not have to see the whole image to discover the pattern Connecting to small region with less parameters “ beak, detector Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
4 Why CNN for Image? ▪ Some patterns are much smaller than the whole image A neuron does not have to see the whole image to discover the pattern. “beak” detector Connecting to small region with less parameters Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

Why cnn for Image? The same patterns appear in different regions upper-left beak” detector Do almost the same thing They can use the same set of parameters middle beak” detector 5 Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
5 Why CNN for Image? ▪ The same patterns appear in different regions. “upper-left beak” detector “middle beak” detector They can use the same set of parameters. Do almost the same thing Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

Why cnn for Image? Subsampling the pixels will not change the object bird bird subsampling We can subsample the pixels to make image smaller Less parameters for the network to process the image Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
6 Why CNN for Image? ▪ Subsampling the pixels will not change the object subsampling bird bird We can subsample the pixels to make image smaller Less parameters for the network to process the image Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

The whole cnn cat do Convolution Max Pooling Can repeat Fully Connected many times Feedforward network Convolution OOOOOOOU Max Pooling Flatten Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
7 The whole CNN Fully Connected Feedforward network cat dog …… Convolution Max Pooling Convolution Max Pooling Flatten Can repeat many times Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

The whole cnn Property 1 Some patterns are much smaller Convolution than the whole image Property 2 The same patterns appear in Max Pooling different regions Can repeat many times Property 3 Convolution Subsampling the pixels will not change the object Max Pooling Flatten 8 Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
8 The whole CNN Convolution Max Pooling Convolution Max Pooling Flatten Can repeat many times ➢ Some patterns are much smaller than the whole image ➢ The same patterns appear in different regions. ➢ Subsampling the pixels will not change the object Property 1 Property 2 Property 3 Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

The whole cnn cat d Convolution Max Pooling Can repea Fully Connected many times Feedforward network Convolution Max Pooling Flatten 9 Sourceoftheslidehttp://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/cnn.pdf
9 The whole CNN Fully Connected Feedforward network cat dog …… Convolution Max Pooling Convolution Max Pooling Flatten Can repeat many times Source of the slide: http://219.216.82.193/cache/8/03/speech.ee.ntu.edu.tw/43149163c97eb6be7590e3d8de445a67/CNN.pdf

Outline Convolutional neural Network Convolution Max Pooling CNN Forward Propagation CNN Backward Propagation CNN Architectures ■ LeNet-5、 AlexNet VGGNet GooqLeNet ■ ResNet 10
10 Outline ▪ Convolutional Neural Network ▪ Convolution ▪ Max Pooling ▪ CNN Forward Propagation ▪ CNN Backward Propagation ▪ CNN Architectures ▪ LeNet-5 、 AlexNet ▪ VGGNet ▪ GoogLeNet ▪ ResNet
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《Advanced Artificial Intelligence》课程PPT教学课件(高级人工智能)Lecture 3 Decision Tree.pptx
- 《Advanced Artificial Intelligence》课程PPT教学课件(高级人工智能)Lecture 5 Neural Networks.pptx
- 北京林业大学:《深度学习》课程PPT教学课件(Deep Learning)第二章 神经网络与优化方法(主讲:孙钰).pptx
- 浙江长征职业技术学院:计算机信息管理专业课程教学大纲汇编.doc
- 《电子商务概论》课程教学资源(PPT课件讲稿)第六章 电子商务支付技术.ppt
- 丽水职业技术学院:《电子商务实训》课程教学资源(PPT课件讲稿)电子商务交易模式之“B2B”——电子合同模式.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第七章 搜索结构第七章 搜索结构.ppt
- 《网络营销实务》课程教学资源(PPT课件讲稿)第二章 网络营销环境分析.ppt
- 江苏大学:《面向对象建模技术》课程教学资源(PPT课件讲稿)第2章 用例图.ppt
- 《计算机网络》课程教学大纲(适用专业:信息与计算科学).pdf
- 上海交通大学:云安全(PPT讲稿)Cloud Security.pptx
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 查找.ppt
- 《人工智能技术导论》课程教学资源(PPT课件讲稿)第2章 逻辑程序设计语言.ppt
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 3 SQL.ppt
- 中国科学技术大学:《现代密码学理论与实践》课程教学资源(PPT课件讲稿)第4章 有限域(第五版).pptx
- 清华大学:《计算机导论》课程电子教案(PPT教学课件)第3章 计算机基础知识.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第六版,PPT课件讲稿)第六章 应用层.pptx
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第6章 用数组处理批量数据.pptx
- 西安电子科技大学:《数据库系统 DataBase System》课程教学资源(PPT课件讲稿)Unit 2 The Relational Model.ppt
- 西安电子科技大学:《Mobile Programming》课程PPT教学课件(Android Programming)Lecture 2 Intro to Java Programming.pptx
- 《操作系统》课程教学资源(PPT课件讲稿)文件管理 File Management.ppt
- 《操作系统 Operating System》课程电子教案(PPT课件讲稿)第一章 简介.ppt
- 《计算机辅助设计——Photoshop制图》课程标准.pdf
- 河南中医药大学(河南中医学院):《计算机网络》课程教学资源(PPT课件讲稿)第六章 应用层.ppt
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)第4讲 网络管理实训内容(上).pptx
- 《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第8讲 数据库恢复技术.ppt
- 新乡学院:《数据库原理》课程电子教案(PPT课件)第3章 关系数据库.ppt
- 新乡学院:《计算机网络》课程教学大纲(适用专业:信息与计算科学).pdf
- 哈尔滨工业大学:《中文信息处理》课程教学资源(PPT课件讲稿)句法分析(张宇).ppt
- 隐马尔科夫模型和词性标注(PPT课件讲稿).ppt
- 有限元分析 ANSYS:Modeling Turbulent Flows(PPT讲稿)Introductory FLUENT Training.ppt
- Fluent:《GAMBIT建模教程》教学资源(PPT讲稿)Geometry Operations in GAMBIT.ppt
- 香港科技大学:《计算机网络 Computer Networks》课程教学资源(PPT课件)Chapter 1 Introduction of computer networking.ppsx
- FairCloud:Sharing the Network in Cloud Computing.pptx
- Incorporating Structured World Knowledge into Unstructured Documents via——Heterogeneous Information Networks.pptx
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 07 Network Security.ppt
- C++ Review.ppt
- 《计算机网络与通讯》课程教学资源(PPT课件讲稿,英文版)Chapter 3 Transport Layer.ppt
- 《Java编程导论》课程教学资源(PPT课件讲稿)Chapter 8 Strings and Text I/O.ppt
- 印第安纳大学:《Informatics》课程PPT教学课件(信息学)08 网络爬虫 Web Crawling.ppt