美国麻省理工大学:《结构力学》(英文版) Unit 14 Behavior of General (including Unsymmetric Cross-section) Beams

MT-1620 al.2002 Unit 14 Behavior of General (including Unsymmetric Cross-section ) Beams Readings Rivello 7.1-7.5,77,7.8 T&g Paul A Lagace, Ph. D Professor of aeronautics Astronautics and Engineering Systems Paul A Lagace @2001
Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Unit 14 Behavior of General (including Unsymmetric Cross-section) Beams Readings: Rivello 7.1 - 7.5, 7.7, 7.8 T & G 126

MT-1620 al.2002 Earlier looked at Simple Beam Theory in which one considers a beam in the x-z plane with the beam along the x-direction and the load in the z-direction Figure 14.1 Representation of Simple Beam Now look at a more general case Loading can be in any direction Can resolve the loading to consider transverse loadings p,(x) ind p,(x); and axial loading px X Include a temperature distribution T(x, y, z) Paul A Lagace @2001 Unit 14-2
Unit 14 - 2 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Earlier looked at Simple Beam Theory in which one considers a beam in the x-z plane with the beam along the x-direction and the load in the z-direction: Figure 14.1 Representation of Simple Beam • Loading can be in any direction • Can resolve the loading to consider transverse loadings py(x) and pz(x); and axial loading px(x) • Include a temperature distribution T(x, y, z) Now look at a more general case:

MT-1620 al.2002 Figure 14.2 Representation of General Beam force/leng Maintain several of the same definitions for a beam and basic assumptions Geometry: length of beam(x-dimension) greater than y and Z dimensions Stress State Oxx is the only "important stress; Ox and ox found from equilibrium equations, but are secondary in importance Deformation: plane sections remain plane and perpendicular to the midplane after deformation( Bernouilli-Euler Hypothesis) Paul A Lagace @2001 Unit 14-3
Unit 14 - 3 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Figure 14.2 Representation of General Beam Maintain several of the same definitions for a beam and basic assumptions. • Geometry: length of beam (x-dimension) greater than y and z dimensions • Stress State: σxx is the only “important” stress; σxy and σxz found from equilibrium equations, but are secondary in importance • Deformation: plane sections remain plane and perpendicular to the midplane after deformation (Bernouilli-Euler Hypothesis)

MT-1620 al.2002 Definition of stress resultants Consider a cross-section along x Figure 14.3 Representation of cross-section of general beam Place axis@ center of gravity of section ● Where O dA M,=Jon- da M y These are resultants l Paul A Lagace @2001 Unit 14-4
Unit 14 - 4 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Definition of stress resultants Consider a cross-section along x: Figure 14.3 Representation of cross-section of general beam Place axis @ center of gravity of section where: These are resultants! S dA z xz = − ∫∫ σ F dA = ∫∫ σ xx S dA y xy = − ∫∫ σ M z dA y xx = − ∫∫ σ M y dA z xx = − ∫∫ σ

MT-1620 al.2002 The values of these resultants are found from statics in terms of the loading px, py, pz, and applying the boundary conditions of the problem Deformation Look at the deformation. In the case of Simple Beam Theory, had dx where u is the displacement along the X-axis This comes from the picture Figure 14.4 Representation of deformation in Simple Beam Theory 2 dx s for small angles Now must add two other contributions Paul A Lagace @2001 Unit 14-5
Unit 14 - 5 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 The values of these resultants are found from statics in terms of the loading px, py, pz, and applying the boundary conditions of the problem Deformation Look at the deformation. In the case of Simple Beam Theory, had: u z d w d x = − where u is the displacement along the x-axis. Now must add two other contributions….. Figure 14.4 Representation of deformation in Simple Beam Theory This comes from the picture: for small angles

MT-1620 al.2002 1. Have the same situation in the x-y plane Figure 14.5 Representation of bending displacement in x-y plane d By the same geometrical g dx arguments used previously where v is the displacement in the y-direction 2. Allow axial loads, so have an elongation in the x- direction due to this. Call this uo Paul A Lagace @2001 Unit 14-6
Unit 14 - 6 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 1. Have the same situation in the x-y plane Figure 14.5 Representation of bending displacement in x-y plane where v is the displacement in the y-direction 2. Allow axial loads, so have an elongation in the x-direction due to this. Call this u0: By the same geometrical arguments used previously

MT-1620 al.2002 Figure 14.6 Representation of axial elongation in x-z plane X un, v w are the deformations of the midplane Thus d v d w u(x, y, =)=uo-y dx ax bending bending about about z-aXIs y-aXIs v(x,y, ==v(x) "(x,y,z)=W(x) v and w are constant at any cross-section location, X Paul A Lagace @2001 Unit 14-7
Unit 14 - 7 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Figure 14.6 Representation of axial elongation in x-z plane u0, v, w are the deformations of the midplane Thus: u xyz u y d v d x z d w d x (,,) = 0 − − bending about z-axis bending about y-axis v xyz v x (,,) () = w xyz w x (,,) () = v and w are constant at any cross-section location, x

MT-1620 al.2002 Stress and strain From the strain-displacement relation get du d dx dx d x (these become total derivatives as there is no variation of the displacement in y and z) for functional ease write da dx d21 Caution: Rivello uses C1, C2, C3. These are not constants so use f, =f(x)( functions of x) Paul A Lagace @2001 Unit 14-8
Unit 14 - 8 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Stress and Strain From the strain-displacement relation, get: ε ∂ ∂ xx u x d u dx y d v dx z d w dx == + − + − 0 2 2 2 2 (these become total derivatives as there is no variation of the displacement in y and z) for functional ease, write: f d ud x 1 0 = f d v d x 2 2 2 = − f d w d x 3 2 2 = − Caution: Rivello uses C1, C2, C3. These are not constants, so use fi ⇒ fi(x) (functions of x)

MT-1620 al.2002 Thus Ex=f+左2y+f2 Then use this in the stress-strain equation (orthotropic or "lower) +a△T E (include temperature effects Note: ignore" thermal strains in y and Z. These are of secondary" importance Thus O=EE.-Ea△T and using the expression for Ex E+y+2)-Ea△T Can place this expression into the expression for the resultants (force and moment) to get Paul A Lagace @2001 Unit 14-9
Unit 14 - 9 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 Thus: ε xx =+ + f fy fz 12 3 Then use this in the stress-strain equation (orthotropic or “lower”): ε σ xx α xx E = + ∆T (include temperature effects) Note: “ignore” thermal strains in y and z. These are of “secondary” importance. Thus: σ εα xx xx = E ET − ∆ and using the expression for εx: σ α xx = ++ E f fy fz E T ( ) 12 3 − ∆ Can place this expression into the expression for the resultants (force and moment) to get:

MT-1620 al.2002 o dA fE dA+ fley dA f lEz dA ∫ Ea△TdA +y=4-J∫Ea△d M=∫od4.∫E=d4+∫Eyd4 +∫E=2a4-J∫ Ea△TzdA (Note: f,, f2, f3 are functions of X and integrals are in dy and dz, so these come outside the integral sign Solve these equations to determine f,(x),2(x), f3 X) lote: Have kept the modulus, E, within the ntegral since will allow it to vary across the cross-section Paul A Lagace @2001 Unit 14-10
Unit 14 - 10 Paul A. Lagace © 2001 MIT - 16.20 Fall, 2002 F dA f E dA f E y dA ==+ ∫∫ ∫∫ ∫∫ σ xx 1 2 + − ∫∫ ∫∫ f E z dA E T dA 3 α ∆ − == + M y dA f E y d ∫∫ ∫∫ ∫∫ z xx σ 1 2 A f E y dA 2 + − ∫∫ ∫∫ f E yz dA 3 E Ty dA α ∆ − == + M z dA f E z d ∫∫ ∫∫ ∫∫ y xx σ 1 2 A f E y z dA + − ∫∫ ∫∫ f E z dA E T z dA 3 2 α ∆ (Note: f1, f2, f3 are functions of x and integrals are in dy and dz, so these come outside the integral sign). Solve these equations to determine f1(x), f2(x), f3(x): Note: Have kept the modulus, E, within the integral since will allow it to vary across the cross-section
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 美国麻省理工大学:《结构力学》(英文版) Unit 13 Review of Simple Beam Theory.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 12 Torsion of (Thin)Closed Sections.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 9 Effects of the Environment.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 8 Solution Procedures.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 6 Plane Stress and Plane Strain.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 7 Transformations and Other Coordinate Systems.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 5 Engineering Constants.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 2 Loads and Design Considerations.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 4 Equations of Elasticity.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 3 (Review of) Language of Stress/Strain Analysis.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 1 Introduction and Design Overview.pdf
- 《直升机发展历史》讲义.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Jaroslaw Sobieski.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Design optimization.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 7 Structural Testing.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Introduction to Manufacturing.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Finite Element Method.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 3 Computer Aided Design.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Leader in aluminum investment Castings.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 1 Course Introduction.pdf
- 美国麻省理工大学:《结构力学》(英文版)Unit 10 St. Venant Torsion Theory.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 11 Membrane Analogy (for Torsion).pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 17 The Beam-Column.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 16 Bifurcation Buckling.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 18 Other Issues In Buckling/Structural Instability.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 19 General Dynamic Considerations.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 15 Shearing and Torsion (and Bending) of Shell Beams.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 23 Vibration of Continuous Systems.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 21 Influence Coefficients.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 20 Solutions for Single Spring-Mass Systems.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 22 Vibration of Multi Degree-Of- Freedom Systems.pdf
- 《工程中的概率方法》Section2Article1 一些思想介绍.pdf
- 《工程中的概率方法》Section2Article3.pdf
- 《工程中的概率方法》Section2Article4.pdf
- 《工程中的概率方法》Section2Article5.pdf
- 《工程中的概率方法》Section2Article2 简化为一阶系统.pdf
- 《工程中的概率方法》Section2Article8.pdf
- 《工程中的概率方法》Section2Article6.pdf
- 《工程中的概率方法》Section2Article9 to upload.pdf
- 《工程中的概率方法》Section3Article3.pdf