美国麻省理工大学:《结构力学》(英文版) Unit 13 Review of Simple Beam Theory

MT-1620 al.2002 Unit 13 Review of Simple Beam Theory Readings Review Unified Engineering notes on Beam Theory BMP 38.3.9,3.10 t&G 120-125 Paul A Lagace, Ph. D Professor of aeronautics Astronautics and Engineering Systems Paul A Lagace @2001
MIT - 16.20 Fall, 2002 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 120-125 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Paul A. Lagace © 2001

MT-1620 al.2002 IV. General Beam Theory Paul A Lagace @2001 Unit 13-2
MIT - 16.20 Fall, 2002 IV. General Beam Theory Paul A. Lagace © 2001 Unit 13 - 2

MT-1620 al.2002 We have thus far looked at In-plane loads torsional loads In addition, structures can carry loads by bending. The 2-D case is a plate, the simple 1-d case is a beam. Let's first review what you learned in Unified as Simple Beam Theory (review of) Simple Beam Theory A beam is a bar capable of carrying loads in bending. The loads are applied transverse to its longest dimension Assumptions 1. Geometry Paul A Lagace @2001 Unit 13-3
MIT - 16.20 Fall, 2002 We have thus far looked at: • in-plane loads • torsional loads In addition, structures can carry loads by bending. The 2-D case is a plate, the simple 1-D case is a beam. Let’s first review what you learned in Unified as Simple Beam Theory (review of) Simple Beam Theory A beam is a bar capable of carrying loads in bending. The loads are applied transverse to its longest dimension. Assumptions: 1. Geometry Paul A. Lagace © 2001 Unit 13 - 3

MT-1620 al.2002 Figure 13.1 General Geometry of a Beam C2oss-5ACT/oA a)long&thin→>b,h b)loading is in z-direction c)loading passes through "shear center= no torsion/twist (we'l define this term later and relax this constraint d)cross-section can vary along X 2. Stress state a)Oy, Oyz, Oxy=0 =no stress in y-direction ZZ = only significant stresses are ox and o Paul A Lagace @2001 Unit 13-4
MIT - 16.20 Fall, 2002 Figure 13.1 General Geometry of a Beam a) long & thin ⇒ l >> b, h b) loading is in z-direction c) loading passes through “shear center” ⇒ no torsion/twist (we’ll define this term later and relax this constraint.) d) cross-section can vary along x 2. Stress state a) σyy, σyz, σxy = 0 ⇒ no stress in y-direction b) σxx >> σzz σxz >> σzz ⇒ only significant stresses are σxx and σxz • Paul A. Lagace © 2001 Unit 13 - 4

MT-1620 al.2002 Note: there is a load in the z-direction to cause these stresses, but generated o is much larger(similar to pressurized cylinder exampl Why is this valid? ook at moment arms Figure 13.2 Representation of force applied in beam fo 是2 Oxx moment arm is order of (h o,, moment arm is order of() ZZ and e>>h >0, for equilibrium Paul A Lagace @2001 Unit 13-5
MIT - 16.20 Fall, 2002 Note: there is a load in the z-direction to cause these stresses, but generated σxx is much larger (similar to pressurized cylinder example) Why is this valid? Look at moment arms: Figure 13.2 Representation of force applied in beam σxx moment arm is order of (h) σzz moment arm is order of (l) and l >> h ⇒ σxx >> σzz for equilibrium Paul A. Lagace © 2001 Unit 13 - 5

MT-1620 Fall 2002 3. Deformation Figure 13.3 Representation of deformation of cross-section of a beam deformed state(capital letters) o is at midplane undeformed state lsmall letters define: W=deflection of midplane(function of x only Paul A Lagace @2001 Unit 13-6
MIT - 16.20 Fall, 2002 3. Deformation Figure 13.3 Representation of deformation of cross-section of a beam deformed state (capital letters) undeformed state (small letters) o is at midplane define: w = deflection of midplane (function of x only) Paul A. Lagace © 2001 Unit 13 - 6

MT-1620 al.2002 a) Assume plane sections remain plane and perpendicular to the midplane after deformation Bernouilli - Euler Hypothesis"* 1750 b)For small angles, this implies the following for deflections l(x,y,二)≈ z≈-2 (13-1) d x total derivative dx since it does not vary with y or z Figure 13.4 Representation of movement in x-direction of two points on same plane in beam u=-z sin note direction of u relative to +x direction Paul A Lagace @2001 Unit 13-7
MIT - 16.20 Fall, 2002 a) Assume plane sections remain plane and perpendicular to the midplane after deformation “Bernouilli - Euler Hypothesis” ~ 1750 b) For small angles, this implies the following for deflections: dw u x( , y,) z ≈ − zφ ≈ − z (13 - 1) dx total derivative φ = dw since it does not dx vary with y or z Figure 13.4 on same plane in beam Note direction of u relative to +x direction Representation of movement in x-direction of two points ⇒ u = -z sin φ Paul A. Lagace © 2001 Unit 13 - 7

MT-1620 al.2002 and forφsml →U=Zφ v(x,y,z)=0 (x,y)≈w(x) (13-2) Now look at the strain-displacement equations du d (13-3) dx dx dv dy Es a=0(no deformation through thickness) 0 du dv dy dx dv dw 0z0 y du dw 00w dz dx dx dx Paul A Lagace @2001 Unit 13-8
MIT - 16.20 Fall, 2002 and for φ small: ⇒ u = -z φ v x( , y,) z = 0 w x( , y,) z ≈ w x( ) (13 - 2) Now look at the strain-displacement equations: 2 ∂ u d w ε xx = ∂ x = − z dx2 (13 - 3) ∂ v ε = = 0 yy ∂ y ∂ w ε = = 0 (no deformation through thickness) zz ∂ z ∂ u ∂ v ε = + = 0 xy ∂ y ∂ x ∂ v ∂ w ε = + = 0 yz ∂ z ∂ y ∂ u ∂ w ∂ w ∂ w ε = + = − + = 0 xz ∂ z ∂ x ∂ x ∂ x Paul A. Lagace © 2001 Unit 13 - 8

MT-1620 al.2002 Now consider the stress-strain equations (for the time being consider isotropic.extend this to orthotropic later) (13-4 E small inconsistency with previous E small inconsistency with previous E 2(+y) E 2(1+v E 2(1+v o <--inconsistency again E We get around these inconsistencies by saying that ey, Ezz, Exz are very small but not quite zero. This is an approximation. We will evaluate these later on Paul A Lagace @2001 Unit 13-9
MIT - 16.20 Fall, 2002 Now consider the stress-strain equations (for the time being consider isotropic…extend this to orthotropic later) σ xx ε = (13 - 4) xx E ν σ xx ε = − <-- small inconsistency with previous yy E ν σ xx ε = − <-- small inconsistency with previous zz E ε = 21 + ν)σ xy = 0 ( xy E ( ε yz = 21 + ν)σ yz = 0 E ( ε zx = 21 + ν)σ zx <-- inconsistency again! E We get around these inconsistencies by saying that εyy, εzz, εxz are very small but not quite zero. This is an approximation. We will evaluate these later on. Paul A. Lagace © 2001 Unit 13 - 9

MT-1620 al.2002 4. Equilibrium Equations Assumptions a)no body forces b) equilibrium in y-direction is ignored c)x, z equilibrium are satisfied in an average sense So 0 do 0(13-5) dx dz 0=0 -equilibrium) 00c 00 0(13-6) dx 0 Note average equilibrium equations [g(3-6)→d dx (13-6a) Eq(3-5)]dh→M (13-5a) Paul A Lagace @2001 Unit 13-10
MIT - 16.20 Fall, 2002 4. Equilibrium Equations Assumptions: a) no body forces b) equilibrium in y-direction is “ignored” c) x, z equilibrium are satisfied in an average sense So: ∂ σ xx ∂ σ xz + = 0 (13 - 5) ∂ x ∂ z 0 = 0 (y -equilibrium) ∂ σ xz ∂ σ zz + = 0 (13 - 6) ∂ x ∂ z Note, average equilibrium equations: ∫∫ [ Eq. (13 − 6) ] dy dz ⇒ dS = p (13 - 6a) face dx ∫∫ z[ Eq. (13 − 5) ] dy dz ⇒ d M = S (13 - 5a) face dx Paul A. Lagace © 2001 Unit 13 - 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 美国麻省理工大学:《结构力学》(英文版) Unit 12 Torsion of (Thin)Closed Sections.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 9 Effects of the Environment.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 8 Solution Procedures.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 6 Plane Stress and Plane Strain.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 7 Transformations and Other Coordinate Systems.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 5 Engineering Constants.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 2 Loads and Design Considerations.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 4 Equations of Elasticity.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 3 (Review of) Language of Stress/Strain Analysis.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 1 Introduction and Design Overview.pdf
- 《直升机发展历史》讲义.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Jaroslaw Sobieski.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Design optimization.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 7 Structural Testing.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Introduction to Manufacturing.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Finite Element Method.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 3 Computer Aided Design.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Leader in aluminum investment Castings.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 1 Course Introduction.pdf
- 南京航空航天大学:《飞机结构设计》课程PPT教学课件(讲稿)第4章 机翼尾翼的结构分析.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 14 Behavior of General (including Unsymmetric Cross-section) Beams.pdf
- 美国麻省理工大学:《结构力学》(英文版)Unit 10 St. Venant Torsion Theory.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 11 Membrane Analogy (for Torsion).pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 17 The Beam-Column.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 16 Bifurcation Buckling.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 18 Other Issues In Buckling/Structural Instability.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 19 General Dynamic Considerations.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 15 Shearing and Torsion (and Bending) of Shell Beams.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 23 Vibration of Continuous Systems.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 21 Influence Coefficients.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 20 Solutions for Single Spring-Mass Systems.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 22 Vibration of Multi Degree-Of- Freedom Systems.pdf
- 《工程中的概率方法》Section2Article1 一些思想介绍.pdf
- 《工程中的概率方法》Section2Article3.pdf
- 《工程中的概率方法》Section2Article4.pdf
- 《工程中的概率方法》Section2Article5.pdf
- 《工程中的概率方法》Section2Article2 简化为一阶系统.pdf
- 《工程中的概率方法》Section2Article8.pdf
- 《工程中的概率方法》Section2Article6.pdf
- 《工程中的概率方法》Section2Article9 to upload.pdf