美国麻省理工大学:《结构力学》(英文版) Unit 16 Bifurcation Buckling

MT-1620 al.2002 Unit 16 Bifurcation Buckling Readings Rivello 14.1.14.2.144 Paul A Lagace, Ph. D Professor of aeronautics Astronautics and Engineering Systems Paul A Lagace @2001
MIT - 16.20 Fall, 2002 Unit 16 Bifurcation Buckling Readings: Rivello 14.1, 14.2, 14.4 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Paul A. Lagace © 2001

MT-1620 al.2002 V. Stability and Buckling Paul A Lagace @2001 Unit 16-2
MIT - 16.20 Fall, 2002 V. Stability and Buckling Paul A. Lagace © 2001 Unit 16 - 2

MT-1620 al.2002 Now consider the case of compressive loads and the instability they can cause. Consider only static instabilities (static loading as opposed to dynamic loading [ e.g., flutter) From Unified, defined instability via a system becomes unstable when a negative stiffness overcomes the natural stiffness of the structure (Physically, the more you push, it gives more and builds on Itselt Review some of the mathematical concepts. Limit initial discussions to columns Generally, there are two types of buckling/instability Bifurcation buckling Snap-through buckling Paul A Lagace @2001 Unit 16-3
MIT - 16.20 Fall, 2002 Now consider the case of compressive loads and the instability they can cause. Consider only static instabilities (static loading as opposed to dynamic loading [e.g., flutter]) From Unified, defined instability via: “A system becomes unstable when a negative stiffness overcomes the natural stiffness of the structure.” (Physically, the more you push, it gives more and builds on itself) Review some of the mathematical concepts. Limit initial discussions to columns. Generally, there are two types of buckling/instability • Bifurcation buckling • Snap-through buckling Paul A. Lagace © 2001 Unit 16 - 3

MT-1620 Fall 2002 Bifurcation Buckling There are two(or more)equilibrium solutions(thus the solution path bifurcates) from Unified Figure 16.1 Representation of initially straight column under compressive load X Paul A Lagace @2001 Unit 16-4
MIT - 16.20 Fall, 2002 Bifurcation Buckling There are two (or more) equilibrium solutions (thus the solution path “bifurcates”) from Unified… Figure 16.1 Representation of initially straight column under compressive load Paul A. Lagace © 2001 Unit 16 - 4

MT-1620 al.2002 Figure 16.2 Basic load-deflection behavior of initially straight column under compressive load Actual behavior Note: Bifurcation is a mathematical concept. The manifestations in an actual system are altered due to physical realities/imperfections sometimes these differences can be very important (first continue with ideal case Perfect ABC-Equilibrium position, but unstable behavior BD-Equilibrium position There are also other equilibrium positions Imperfections cause the actual behavior to only follow this as asymptotes(will see later) Paul A Lagace @2001 Unit 16-5
MIT - 16.20 Fall, 2002 Figure 16.2 Basic load-deflection behavior of initially straight column under compressive load Actual behavior Note: Bifurcation is a mathematical concept. The manifestations in an actual system are altered due to physical realities/imperfections. Sometimes these differences can be very important. (first continue with ideal case…) Perfect ABC - Equilibrium position, but unstable behavior BD - Equilibrium position There are also other equilibrium positions Imperfections cause the actual behavior to only follow this as asymptotes (will see later) Paul A. Lagace © 2001 Unit 16 - 5

MT-1620 al.2002 Snap-Though Buckling Figure 16.3 Representation of column with curvature(shallow arch) with load applied perpendicular to column P Figure 16.4 Basic load-deflection behavior of shallow arch with transverse load F arch"snaps through" to F when load reaches c Thus there are nonlinear load-deflection curves in this behavior Paul A Lagace @2001 Unit 16-6
MIT - 16.20 Fall, 2002 Snap-Though Buckling Figure 16.3 Representation of column with curvature (shallow arch) with load applied perpendicular to column Figure 16.4 Basic load-deflection behavior of shallow arch with transverse load arch “snaps through” to F when load reaches C Thus, there are nonlinear load-deflection curves in this behavior Paul A. Lagace © 2001 Unit 16 - 6

MT-1620 Fall 2002 For"deeper arches antisymetric behavior is possible Figure 16.5 Representation of antsy metric buckling of deeper arch under transverse load 2 /(flops over) before snapping throug h Figure 16.6 Load-deflection behavior of deeper arch under transverse load ABCDEF-symmetric snap through ABF-antisymmetric behavior E Paul A Lagace @2001 Unit 16-7
MIT - 16.20 Fall, 2002 For “deeper” arches, antisymetric behavior is possible Figure 16.5 Representation of antisymetric buckling of deeper arch under transverse load (flops over) before snapping through Figure 16.6 Load-deflection behavior of deeper arch under transverse load ABCDEF - symmetric snapthrough ABF - antisymmetric behavior A D E • • • Paul A. Lagace © 2001 Unit 16 - 7

MT-1620 al.2002 Will deal mainly with Bifurcation Buckling First consider the " perfect case: uniform column under end load First look at the simply-supported case. column is initially straight Load is applied along axis of beam Perfect column only axial shortening occurs(before instability), i.e., no bending Figure 16.7 Simply-supported column under end compressive load EI= constant Paul A Lagace @2001 Unit 16-8
MIT - 16.20 Fall, 2002 Will deal mainly with… Bifurcation Buckling First consider the “perfect” case: uniform column under end load. First look at the simply-supported case…column is initially straight • Load is applied along axis of beam • “Perfect” column ⇒ only axial shortening occurs (before instability), i.e., no bending Figure 16.7 Simply-supported column under end compressive load EI = constant Paul A. Lagace © 2001 Unit 16 - 8

MT-16.20 al.2002 Recall the governing equation W el- t p dx dx Notice that p does not enter into the equation on the right hand side(making the differential equation homogenous), but enters as a coefficient of a linear differential term This is an eigenvalue problem. Let W=已 this gives EI i0.0 E epeated roots= need to look for more solutions End up with the following general homogenous solution W= Asin-x+ Bcos -x+C+ Dx El Paul A Lagace @2001 Unit 16-9
MIT - 16.20 Fall, 2002 Recall the governing equation: 4 2 EI dw + P dw = 0 dx 4 dx2 --> Notice that P does not enter into the equation on the right hand side (making the differential equation homogenous), but enters as a coefficient of a linear differential term This is an eigenvalue problem. Let: λ x w = e this gives: λ4 + P λ2 = 0 EI ⇒ λ = ± P EI i 0, 0 repeated roots ⇒ need to look for more solutions End up with the following general homogenous solution: w = Asin P EI x + B cos P EI x + C + Dx Paul A. Lagace © 2001 Unit 16 - 9

MT-1620 al.2002 where the constants A, B, C, d are determined by using the Boundary Conditions For the simply-supported case, boundary conditions are x=0W=0 M=EⅠ @x=e w=0 M=0 From: W(X=0)=0→B+C=0 M(X=0)=0→-EIB=0 C=0 El WX=0)=0→Asn,,l+Dl=0 El D=0 (x=O) 0→-EⅠAsin1=0 El El Paul A Lagace @2001 Unit 16-10
MIT - 16.20 Fall, 2002 where the constants A, B, C, D are determined by using the Boundary Conditions For the simply-supported case, boundary conditions are: @ x = 0 w = 0 2 M = E I dw = 0 dx2 @ x = l w = 0 M = 0 From: w(x = 0) = 0 ⇒ B + C = 0 B = 0 ⇒ M(x = 0) = 0 ⇒ − EI P B = 0 C = 0 EI w(x = l) = 0 ⇒ Asin P EI l + Dl = 0 ⇒ D = 0 M(x = l) = 0 ⇒ − EI P Asin P EI l = 0 EI Paul A. Lagace © 2001 Unit 16 - 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 美国麻省理工大学:《结构力学》(英文版) Unit 17 The Beam-Column.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 11 Membrane Analogy (for Torsion).pdf
- 美国麻省理工大学:《结构力学》(英文版)Unit 10 St. Venant Torsion Theory.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 14 Behavior of General (including Unsymmetric Cross-section) Beams.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 13 Review of Simple Beam Theory.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 12 Torsion of (Thin)Closed Sections.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 9 Effects of the Environment.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 8 Solution Procedures.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 6 Plane Stress and Plane Strain.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 7 Transformations and Other Coordinate Systems.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 5 Engineering Constants.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 2 Loads and Design Considerations.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 4 Equations of Elasticity.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 3 (Review of) Language of Stress/Strain Analysis.pdf
- 美国麻省理工大学:《结构力学》英文版 Unit 1 Introduction and Design Overview.pdf
- 《直升机发展历史》讲义.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Jaroslaw Sobieski.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Design optimization.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Lecture 7 Structural Testing.pdf
- 美国麻省理工大学:《Engineering Design and Rapid Prototyping》Introduction to Manufacturing.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 18 Other Issues In Buckling/Structural Instability.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 19 General Dynamic Considerations.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 15 Shearing and Torsion (and Bending) of Shell Beams.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 23 Vibration of Continuous Systems.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 21 Influence Coefficients.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 20 Solutions for Single Spring-Mass Systems.pdf
- 美国麻省理工大学:《结构力学》(英文版) Unit 22 Vibration of Multi Degree-Of- Freedom Systems.pdf
- 《工程中的概率方法》Section2Article1 一些思想介绍.pdf
- 《工程中的概率方法》Section2Article3.pdf
- 《工程中的概率方法》Section2Article4.pdf
- 《工程中的概率方法》Section2Article5.pdf
- 《工程中的概率方法》Section2Article2 简化为一阶系统.pdf
- 《工程中的概率方法》Section2Article8.pdf
- 《工程中的概率方法》Section2Article6.pdf
- 《工程中的概率方法》Section2Article9 to upload.pdf
- 《工程中的概率方法》Section3Article3.pdf
- 《工程中的概率方法》Section3Article1.pdf
- 《工程中的概率方法》Section3Article2.pdf
- 《工程中的概率方法》Section3Article4.pdf
- 《工程中的概率方法》Section3Article5.pdf