麻省理工学院:《自制决策制造原则》英文版 Probabilistic model

●●°| Probab| listic Mode ● EStimate p(X Be(x,)=p(x,|=,a1,1,a12,=0) ● Bayes’rule Bel(x,= P(,|x,a1-12=1,a12…,2=0)p(x1a1,21,a12,-) tt-1-t-1t-2…:-0 my(1|x1)p(x1an1,x1,a12x,=0)
Bel (x )t Probabilistic Model z Estimate p(xt): Bel (x ) = x p | a z t −1, zt −1, at −2 ,..., z ) t ( t t , 0 z Bayes’ rule: (z p | x , a ( t −1, zt −1, at −2 ,..., z ) x p | at −1, zt −1, at −2 ,..., z ) = t t 0 t (z p t | at −1, zt −1, at −2 ,..., z )0 =α ( ( z p | x ) x p | at −1, zt −1, at −2 ,..., z ) t t t 0 0

●●°| Probab| listic Mode o Integrate over all p(x-1) Bel(x)=∞p(1|x1)p(x1an12E1,a1-2,2-0) (=,|x,)p(x,|x )p(x-1|a12,-0)x1 x-1 D(1x)m(x1|x1,a-)(x)
Probabilistic Model z Integrate over all p(xt-1): Bel (x ) = α ( ( z p | x ) x p | at −1, zt −1, at − 2 ,..., z ) t t t t 0 z p | xt ) ∫ x p t | xt −1, at −1, zt − 2 ,..., z ) x p | at −1 = α ( ( ( ,..., z )dx t 0 t −1 0 t −1 xt −1 z p | xt ) ∫ x p t | xt −1, at −1 = α ( ( ) (x p )dx t t −1 t −1 xt −1

●。。 Probab| istic Mode o Bayes' filter gives recursive, two-step procedure for estimating p(X,) Bel(,)+ap(= l*, p(x, 1x,a p(*-)dr Measurement Prediction o How to represent Bel(X+?
Probabilistic Model | Bayes’ filter gives recursive, two-step procedure for estimating p(x t x t) Bel (x ) = αp (z | x ) p (x | xt − 1, at − 1) p (x )dx t t t ∫ t t −1 t − 1 −1 Measurement Prediction | How to represent Bel(xt)?

Kalman, 1960 ●。。 Kalman filter An action is taken State space Posterior belier Initial belier Posterior belief after sensing after an action
Kalman, 1960 An action is taken Kalman Filter State Space Posterior belief Posterior belief Initial belief after an action after sensing

●。 Problems o Gaussian process and sensor noise Often solved extracting low-dimensional features Data-association problem o Often hard to implement Kalman filters o Gaussian posterior estimate
Problems | Gaussian Process and Sensor Noise • Often solved extracting low-dimensional features • Data-association problem | Often hard to implement Kalman filters | Gaussian Posterior Estimate

●。G| obal localization State space Posterior belier Posterior belief Initial belief after sensing after an action
Global Localization State Space Initial belief Posterior belief after an action Posterior belief after sensing

Burgard et al,1996 ●。° Markov loca| lization 三 L■■ State space itial belief Posterior belief Posterior belief after an action after sensing
Markov Localization State Space Initial belief Posterior belief after an action Posterior belief after sensing Burgard et al, 1996

●。。Prob|ems o Large memory footprint 50 m x 50m map 1° increments ≈343M o FIXed cell size limIts accuracy
Problems | Large memory footprint • 50 m x 50m map • 1° increments • ≈343M | Fixed cell size limits accuracy

Monte carlo localization ●。● The particle filter State space o Sample particles randomly from distribution o Carry around particle sets, rather than full distribution
Monte Carlo Localization: The Particle Filter State Space | Sample particles randomly from distribution | Carry around particle sets, rather than full distribution

●● Using Particle Filters o Can update distribution by updating particle set directly o Can(sometimes)compute properties of distribution directly from particles E.g., any moments: mean, variance, etc o If necessary can recover distribution from particles Fit Gaussian by recovering mean, covariance Kalman filter) Can fit multiple Gaussians using Expectation Maximization Can bin data and recover discrete multinomial (Markov localization)
Using Particle Filters | Can update distribution by updating particle set directly | Can (sometimes) compute properties of distribution directly from particles • E.g., any moments: mean, variance, etc. | If necessary, can recover distribution from particles • Fit Gaussian by recovering mean, covariance (Kalman filter) • Can fit multiple Gaussians using ExpectationMaximization • Can bin data and recover discrete multinomial (Markov localization)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 麻省理工学院:《自制决策制造原则》英文版 Integer programs solvable as LP.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Courtesy or Eric Feron and Sommer.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Courtesy of Sommer Gentry. Used with permission.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Particle filters for Fun and profit.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Conflict-directed Diagnosis.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Roadmap path planning.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Model-based Diagnosis.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Shortest path and Informed Search.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Programming SATPlan.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Solving Constraint Satisfaction Problems Forward Checking.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Solving constraint satisfaction Problems.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Partial Order Planning and execution.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Propositional Logic.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Graph-based Planning.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Even more scheme.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Pairs. Lists.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Constraint Satisfaction Problems: Formulation.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Rules on NEAr and messenger.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Some scheme.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Elements of Algorithmic analysis.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Robot Localization using SIR.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Planning to Maximize Reward: Markov Decision processes.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Learning to Act optimally Reinforcement Learning.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Principles of Autonomy and Decision Making.pdf
- 《航线进度计划》(英文版) lec1 Airline Schedule planning.ppt
- 《航线进度计划》(英文版) lec4 Airline Schedule planning.ppt
- 《航线进度计划》(英文版) lec3 Airline Schedule planning.ppt
- 《航线进度计划》(英文版) lec2 multi-commodity Flows.ppt
- 《航线进度计划》(英文版) lec7 crew scheduling.ppt
- 《航线进度计划》(英文版) lec6 fleet assignment.ppt
- 《航线进度计划》(英文版) lec5 passenger mix.ppt
- 《航线进度计划》(英文版) lec11 aop1.pdf
- 《航线进度计划》(英文版) lec12 aop2.pdf
- 《航线进度计划》(英文版) lec10 schedule design.ppt
- 《航线进度计划》(英文版) lec9 crew pairing and aircraft routing.ppt
- 《航线进度计划》(英文版) lec8 aircraft maintenance routing.ppt
- 《航线进度计划》(英文版) lec13 aop3.pdf
- 《航线进度计划》(英文版) lec14 Shan Lan Robust scheduling.ppt
- 《直升机涡环状态》讲义.ppt
- 美国麻省理工大学:《Thermal Energy》(热能) 01 contents cvr.pdf