《航线进度计划》(英文版) lec5 passenger mix

1206J/1677J/ESD215J Airline Schedule Planning Cynthia barnhart spring 2003
1.206J/16.77J/ESD.215J Airline Schedule Planning Cynthia Barnhart Spring 2003

1206J/16.7FSD.215J The Passenger Mix problem Outline Definitions Formulations Column and row generation Solution Approach Results Applications and Extensions 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 2 1.206J/16.77J/ESD.215J The Passenger Mix Problem Outline – Definitions – Formulations – Column and Row Generation – Solution Approach – Results – Applications and Extensions

Some basic definitions Market An origin-destination airport pair, between which passengers wish to fly one-way BOS-ORD and ORD-BOS are different · Itinerary pecific sequence of flight legs on which a passenger travels from their ultimate origin to their ultimate destination Fare Classes Different prices for the same travel service, usually distinguished from one another by the set of restrictions imposed by the airlines 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 3 Some Basic Definitions • Market – An origin-destination airport pair, between which passengers wish to fly one-way • BOS-ORD and ORD-BOS are different • Itinerary – A specific sequence of flight legs on which a passenger travels from their ultimate origin to their ultimate destination • Fare Classes – Different prices for the same travel service, usually distinguished from one another by the set of restrictions imposed by the airlines

Some more definitions Passengers that are denied booking due to capacity restrictions Recapture Passengers that are recaptured back to the airline after being spilled from another flight leg 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 4 Some More Definitions • Spill – Passengers that are denied booking due to capacity restrictions • Recapture – Passengers that are recaptured back to the airline after being spilled from another flight leg

Problem description even An airline's flight schedule The unconstrained demand for all itineraries over the airline's flight schedule Objective Maximize revenues by intelligently spilling passengers that are either low fare or will most likely fly another itinerary (recapture) Equivalent to minimize the total spill costs 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 5 Problem Description • Given – An airline’s flight schedule – The unconstrained demand for all itineraries over the airline’s flight schedule • Objective – Maximize revenues by intelligently spilling passengers that are either low fare or will most likely fly another itinerary (recapture) • Equivalent to minimize the total spill costs

Example One market. 3 itineraries Unconstrained demand per itinerary Total demand for an itinerary when the number of seats is unlimited 100 J200 A K,100-(B 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 6 Example A B I,100 J,200 K,100 • One market, 3 itineraries • Unconstrained demand per itinerary – Total demand for an itinerary when the number of seats is unlimited

Example with capacity Constraints One market 3 itineraries Capacity on itinerary I= 150 Capacity on itinerary J=175 Capacity on itinerary K= 130 Optimal solution: I100.150 from I ppp oil1 fomJ(A1200175 B from K K,100,130 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 7 Example with Capacity Constraints A B I,100,150 J,200,175 K,100,130 • One market, 3 itineraries – Capacity on itinerary I = 150 – Capacity on itinerary J = 175 – Capacity on itinerary K = 130 • Optimal solution: – Spill _____ from I – Spill _____ from J – Spill _____ from K

Revenue management: A Quick One flight leg Flight 105, LGA-ORD, 287 seats available Two fare classes Y: High fare, no restrictions M: Low fare, many restrictions · Demand for Flight105 Y class: 95 with an average fare of $400 M class: 225 with an average fare of $100 Optimal Spill Solution(Y and 3M passengers) Revenue s9500+1/11 spill: s 5100 2/212021 Barnhart 1.206J/16.77J/ES D 2 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 8 Revenue Management: A Quick Look • One flight leg – Flight 105, LGA-ORD, 287 seats available • Two fare classes: – Y: High fare, no restrictions – M: Low fare, many restrictions • Demand for Flight 105 – Y class: 95 with an average fare of $400 – M class: 225 with an average fare of $100 – Optimal Spill Solution ( Y and M passengers) • Revenue: $ • Spill: $

Network Revenue management Two Flights Flight 105, LGA-ORD, 287 seats Demand (one fare class LGA-ORD, 225 passengers $100 ORD-SFO, 150 passengers $150 LGA-SFO, 150 passengers, $225 Optimal Solution: S HETH5TT5 LGA-ORD passengers ORD-SFO, - passengers LGA-SFO, 1I passengers 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 9 Network Revenue Management • Two Flights – Flight 105, LGA-ORD, 287 seats – Flight 201, ORD-SFO, 287 seats • Demand (one fare class) – LGA-ORD, 225 passengers $100 – ORD-SFO, 150 passengers $150 – LGA-SFO, 150 passengers, $225 • Optimal Solution: $ – LGA-ORD, passengers – ORD-SFO, passengers – LGA-SFO, passengers

Quantitative Share Index or Quality of Service Index(qst Definition Quantitative Share Index or Quality of Service Index(qst There is a QSI for each itinerary i in each market m for each airline a, denoted esli(m) The sum of esT i(m/over all itineraries i in a market m over all airlines a is equal to 1, for all markets m 2/212021 Barnhart 1.206J/16.77J/ESD. 15J
2/21/2021 Barnhart 1.206J/16.77J/ESD.215J 10 Quantitative Share Index or Quality of Service Index (QSI): Definition • Quantitative Share Index or Quality of Service Index (QSI) – There is a QSI for each itinerary i in each market m for each airline a, denoted QSIi(m) a – The sum of QSIi(m) a over all itineraries i in a market m over all airlines a is equal to 1, for all markets m
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《航线进度计划》(英文版) lec6 fleet assignment.ppt
- 《航线进度计划》(英文版) lec7 crew scheduling.ppt
- 《航线进度计划》(英文版) lec2 multi-commodity Flows.ppt
- 《航线进度计划》(英文版) lec3 Airline Schedule planning.ppt
- 《航线进度计划》(英文版) lec4 Airline Schedule planning.ppt
- 《航线进度计划》(英文版) lec1 Airline Schedule planning.ppt
- 麻省理工学院:《自制决策制造原则》英文版 Principles of Autonomy and Decision Making.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Learning to Act optimally Reinforcement Learning.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Planning to Maximize Reward: Markov Decision processes.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Robot Localization using SIR.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Probabilistic model.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Integer programs solvable as LP.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Courtesy or Eric Feron and Sommer.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Courtesy of Sommer Gentry. Used with permission.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Particle filters for Fun and profit.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Conflict-directed Diagnosis.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Roadmap path planning.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Model-based Diagnosis.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Shortest path and Informed Search.pdf
- 麻省理工学院:《自制决策制造原则》英文版 Programming SATPlan.pdf
- 《航线进度计划》(英文版) lec11 aop1.pdf
- 《航线进度计划》(英文版) lec12 aop2.pdf
- 《航线进度计划》(英文版) lec10 schedule design.ppt
- 《航线进度计划》(英文版) lec9 crew pairing and aircraft routing.ppt
- 《航线进度计划》(英文版) lec8 aircraft maintenance routing.ppt
- 《航线进度计划》(英文版) lec13 aop3.pdf
- 《航线进度计划》(英文版) lec14 Shan Lan Robust scheduling.ppt
- 《直升机涡环状态》讲义.ppt
- 美国麻省理工大学:《Thermal Energy》(热能) 01 contents cvr.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 05 part1c.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 04 part1b.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 03 part1a to CMS.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 02 part0.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 06 part1d.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 07 part2a.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 08 part2b.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 09 part2c.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 11 index.pdf
- 美国麻省理工大学:《Thermal Energy》(热能) 10 part3.pdf
- 西安电子科技大学:《雷达对抗原理》课程教学资源(实验讲义)实验一 接收机灵敏度实验.pdf