中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Lecture 3 Number Theory Basics I

Number Theory Basics I Lecture 3
Number Theory Basics I Lecture 3

Numbers Integers Real Arithmetic Operations Addition and subtraction Multiplication and division Exponentiation and logarithm
Numbers • Integers • Real Arithmetic Operations • Addition and subtraction • Multiplication and division • Exponentiation and logarithm

The geometry of numbers Infinity
The Geometry of Numbers • Infinity 0

Mapping line onto circle Stereographic Projection one-to-one mapping
Mapping Line onto Circle • Stereographic Projection – one-to-one mapping x P(x)

Mapping line to circle Wrap around Modular arithmetic
Mapping Line to Circle • Wrap around – Modular arithmetic

Modular arithmetic a= b mod m iff(a-b)=km+ b for some m the equivalence class under mod m m C anonical for rm:Zm={0,12,,m-},we use the positive remainder as the standard representation
Modular Arithmetic • a = b mod m iff (a-b) = km + b for some m • Zm the equivalence class under mod m • [a]m • Canonical form: Zm = {0,1,2,…,m-1}, we use the positive remainder as the standard representation

Modular arithmetic 1=m-1 mod m Zn={0,1,2,34,5,6} (Zm+, x,0, 1)defines a ring +,× are closed associative and commutative Operation x distributes over 0 is the identity for and 1 for x Additive inverse and multiplicative inverse
Modular Arithmetic • -1 = m -1 mod m • Z7 = {0,1,2,3,4,5,6} • (Zm, +, ,0, 1) defines a ring – +, are closed – associative and commutative – Operation distributes over + – 0 is the identity for + and 1 for – Additive inverse and multiplicative inverse

Multiplicative Inverses and Congruence equations When does a number has a multiplicative inverse? When does a congruence equation ax= b mod m has a solution has a unique solution 5X=8mod12=>x=4 3x=8 mod 12==> no solution 3x=9mod12=>xin{3,7,11}
Multiplicative Inverses and Congruence Equations • When does a number has a multiplicative inverse? • When does a congruence equation ax = b mod m – has a solution – has a unique solution • 5x = 8 mod 12 ==> x = 4 • 3x = 8 mod 12 ==> no solution • 3x = 9 mod 12 ==> x in {3,7,11}

Greatest Common Divisor(GCD) gcd(12,15)=3 gcd(12, 25 )=1, relative prime Theorem: ax= b mod m has a unique solution for every number b in Zm iff gcd(a, m)=I
Greatest Common Divisor (GCD) • gcd(12,15) = 3 • gcd(12,25) = 1, relative prime • Theorem: ax = b mod m has a unique solution for every number b in Zm iff gcd(a,m) = 1

Proof Consider the map II(x) aX Suppose x*y and ax=ay mod m then a(x-y)=0 mod m. So if gcd(a, m)=1 then x=y mod m. Therefore, it is a bijection. Therefore, every ax=b mod m as a unique solution In particular ax=I mod m has a solution which implies that a has an inverse
Proof • Consider the map: Pa (x) = ax. Suppose x y and ax = ay mod m then a(x-y) = 0 mod m. So if gcd(a,m) =1, then x = y mod m. Therefore, it is a bijection. Therefore, every ax = b mod m has a unique solution • In particular ax = 1 mod m has a solution, which implies that a has an inverse
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)HashFunctions.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Digital Signature.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)CRYPTO12.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-L&D.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-DES.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-AES.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Introduction(主讲:曹天杰).ppt
- 《软件工程》课程学习资料:软件工程思想(林锐).pdf
- 《C++语言基础教程》课程电子教案(PPT教学课件)第6章 类和对象(二).ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第5章 类和对象(一).ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第4章 函数和作用域.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第3章 语句.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第2章 数据类型和表达式.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第1章 C++语言概述.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第9章 C++的I/O流类库.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第8章 多态性和虚函数.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第7章 继承性和派生类.ppt
- 湖南工程学院:《中文版AutoCAD 2004基础教程》课程教学资源(PPT课件讲稿)第一章 绘图基础知识(刘军安).ppt
- 湖南工程学院:《中文版AutoCAD 2004基础教程》课程教学资源(PPT课件讲稿)第五章 线型、颜色及图层.ppt
- 湖南工程学院:《中文版AutoCAD 2004基础教程》课程教学资源(PPT课件讲稿)第八章 标注文字.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)NTHEORY 2 Group Theory and Number.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Attacks, Services, and Mechanisms.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)overview.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Public Key Cryptography1.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Public Key Cryptography2.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)security protocols.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)前言.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第1章 操作系统概论.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第2章 Linux概述.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)Linux程序设计简介.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)(英文版)Linux Development Environment.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)Linux核心体系结构简介.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第3章 进程管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第4章 Linux进程管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第4章 存储管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第6章 Linux存储管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第七章 文件管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第八章 Linux文件管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第九章 设备管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第十章 Linux设备管理.ppt