中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Attacks, Services, and Mechanisms

Outline 曹天杰 Tianjie Cao ticao@cumt.edu.cn College of Computer Science and echnology china University of Mining and Technology Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.16
曹天杰 Tianjie Cao tjcao@cumt.edu.cn College of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.16 Outline

Attacks. Services, and mechanisms Security attack: Any action that compromises the securi of information Security Mechanism: A mechanism that is designed to detect, prevent, or recover from a security attack Security service: a service that enhances the security of data processing systems and information transfers. A security service makes use of one or more security mechanisms
Attacks, Services, and Mechanisms * Security Attack: Any action that compromises the security of information. * Security Mechanism: A mechanism that is designed to detect, prevent, or recover from a security attack. * Security Service: A service that enhances the security of data processing systems and information transfers. A security service makes use of one or more security mechanisms

Cryptosystem A cryptosystem is a five -tuple(P, C, K, E,D), where the following conditions are satisfied 1. P is a finite set of possible plain teXts 2. C is a finite set of possible ciphertexts 3. K, the keyspace, is a finite set of possible keys 4. For each kEK, there is an encryption rule eK E E and a corresponding decryption rule dk∈D. Each ek:P> C and d,:C→Pare functions such that dex( x )=x for every plaintext X∈P
Cryptosystem • A cryptosystem is a five -tuple (P, C, K, E, D), where the following conditions are satisfied: • 1. P is a finite set of possible plain texts • 2. C is a finite set of possible ciphertexts • 3. K, the keyspace, is a finite set of possible keys • 4. For each kK, there is an encryption rule eK E. and a corresponding decryption rule dK D). Each eK : P → C and dK : C → P are functions such that dK(eK(x)) = x for every plaintext x P

Taxonomy of cryptographic primitives Arbitrary length hash functions Unkeyed Primitives One-way permutations Random sequences Block ciphers Symmetric-key ciphers Stream Arbitrary length hash functions(MACs) ciphers Security Symmetric-keyl Primitives Primitives Signatures Pseudorandom sequences Identification primitives Public-key ciphers Public-key Primitives Signatures Identification primitives
Taxonomy of cryptographic primitives. Arbitrary length hash functions One-way permutations Random sequences Symmetric-key ciphers Arbitrary length hash functions(MACs) Signatures Pseudorandom sequences Identification primitives Public-key ciphers Signatures Identification primitives Unkeyed Primitives Symmetric-key Primitives Public-key Primitives Security Primitives Block ciphers Stream ciphers

Background on Functions(ctd) one-way function if f(x)is easy to compute for all XE X, but it is computationally infeasible to find any XE X such that f(x)=y trapdoor one-way function if given trapdoor information, it becomes feasible to find an x E X such that f(x)y
Background on Functions (ctd) • one-way function if – f(x) is easy to compute for all x X, but – it is computationally infeasible to find any x X such that f(x) =y. • trapdoor one-way function if – given trapdoor information, it becomes feasible to find an x X such that f(x) =y

Cryptanalysis Types of Attacks Ciphertext-Only Attack Attacker knows ciphertext of several messages encrypted with the same key and/or several keys Recover the plaintext of as many messages as possible or even better deduce the key ( or keys) G Iven EK(P1, C2=EK(P2)CEk(P Deduce: EitherP, P2,P k; or an algorithm to infer Pi+from C+=Ek(Pi+v Known-Plaintext attack Known ciphertext/plaintext pair of several messages Deduce the key or an algorithm to decrypt further messages Given: P, C- Ek(P, P2, C2=Ek(P2)Pi, Ci-Ek(P) Deduce: Either k, or an algorithm to infer Pi from 1=E(P1+)
Cryptanalysis - Types of Attacks • Ciphertext-Only Attack – Attacker knows ciphertext of several messages encrypted with the same key and/or several keys – Recover the plaintext of as many messages as possible or even better deduce the key (or keys) – Given: C1 = Ek (P1 ), C2 = Ek (P2 ),...Ci = Ek (Pi ) Deduce: Either P1 , P2 ,...Pi ; k; or an algorithm to infer Pi+1 from Ci+1 = Ek (Pi+1) • Known-Plaintext Attack – Known ciphertext / plaintext pair of several messages – Deduce the key or an algorithm to decrypt further messages – Given: P1 , C1 = Ek (P1 ), P2 , C2 = Ek (P2 ),...Pi , Ci = Ek (Pi ) – Deduce: Either k, or an algorithm to infer Pi+1 from Ci+1 = Ek (Pi+1)

Cryptanalysis Types of Attacks Chosen-Plaintext Attack Attacker can choose the plaintext that gets encrypted thereby potentially getting more information about the key Given P C- Ek(PD, P2, C2-Ek(P2,- Ek(P), where the cryptanalyst gets to choose P,, P,, .P Deduce: Either k, or an algorithm to infer Pi from Ci+I=Ek(P Adaptive Chosen-Plaintext Attack Attacker can choose a series of plaintexts, basing choice on the result of previous encryption >differential cryptanalysis Chosen-ciphertext attack Given: C1, PI= DK (C1, C2, P2=Dk( C2). Ci P=DK(C Deduce: k
Cryptanalysis - Types of Attacks • Chosen-Plaintext Attack – Attacker can choose the plaintext that gets encrypted thereby potentially getting more information about the key – Given: P1 , C1 = Ek (P1 ), P2 , C2 = Ek (P2 ),...Pi , Ci = Ek (Pi ), where the cryptanalyst gets to choose P1 , P2 ,...Pi Deduce: Either k, or an algorithm to infer Pi+1 from Ci+1 = Ek (Pi+1) • Adaptive Chosen-Plaintext Attack – Attacker can choose a series of plaintexts, basing choice on the result of previous encryption → differential cryptanalysis! • Chosen-ciphertext attack – Given: C1 , P1 = Dk (C1 ), C2 , P2 = Dk (C2 ),...Ci , Pi = Dk (Ci ) – Deduce: k

Models for evaluating security Unconditional security(perfect secrecy) Adversaries have unlimited computational resources Observation of the ciphertext provides no information to an adversary One time pad Complexity-theoretic security Adversaries have polynomial computational power Asymptotic analysis and usually also worst-case analysis is used Provable security provably secure if the difficulty of defeating crypto system can be shown to be as difficult as solving a well-known number-theoretic problem
Models for evaluating security • Unconditional security (perfect secrecy) – Adversaries have unlimited computational resources – Observation of the ciphertext provides no information to an adversary – One time pad • Complexity-theoretic security – Adversaries have polynomial computational power. – Asymptotic analysis and usually also worst-case analysis is used • Provable security – provably secure if the difficulty of defeating crypto system can be shown to be as difficult as solving a well-known number-theoretic problem

Models for evaluating security(ctd) Computational security(Practical security) We might define a cryptosystem to be computationally secure if the best algorithm for breaking it requires at least N operations, where N is some specified, very large number The problem is that no known practical cryptosystem can be proved to be secure under this definition neither the Shift Cipher, the Substitution Cipher nor the Vigenke Cipher is computationally secure against a ciphertext-only attack(given a sufficient amount of ciphertext) Ad hoc security(heuristic security) any variety of convincing computational security unforeseen attacks may remain
Models for evaluating security (ctd) • Computational security (Practical security) – We might define a cryptosystem to be computationally secure if the best algorithm for breaking it requires at least N operations, where N is some specified, very large number. – The problem is that no known practical cryptosystem can be proved to be secure under this definition. – neither the Shift Cipher, the Substitution Cipher nor the Vigenke Cipher is computationally secure against a ciphertext-only attack (given a sufficient amount of ciphertext). • Ad hoc security (heuristic security) – any variety of convincing computational security – unforeseen attacks may remain

Shannons Definition of perfect Secrecy The One-Time pad E(m)=m⊕k ciphertext c One-Time pad k bits of random key K use random key sequence 9111011911 only once and then discard it 1001101010 1101000111
Shannon‘s Definition of Perfect Secrecy m ciphertext C One-Time Pad k bits of random key K 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 use random key sequence only once and then discard it ! The One-Time Pad Ek (m) = m k k
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)NTHEORY 2 Group Theory and Number.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Lecture 3 Number Theory Basics I.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)HashFunctions.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Digital Signature.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)CRYPTO12.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-L&D.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-DES.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-AES.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Introduction(主讲:曹天杰).ppt
- 《软件工程》课程学习资料:软件工程思想(林锐).pdf
- 《C++语言基础教程》课程电子教案(PPT教学课件)第6章 类和对象(二).ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第5章 类和对象(一).ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第4章 函数和作用域.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第3章 语句.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第2章 数据类型和表达式.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第1章 C++语言概述.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第9章 C++的I/O流类库.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第8章 多态性和虚函数.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第7章 继承性和派生类.ppt
- 湖南工程学院:《中文版AutoCAD 2004基础教程》课程教学资源(PPT课件讲稿)第一章 绘图基础知识(刘军安).ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)overview.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Public Key Cryptography1.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Public Key Cryptography2.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)security protocols.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)前言.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第1章 操作系统概论.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第2章 Linux概述.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)Linux程序设计简介.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)(英文版)Linux Development Environment.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)Linux核心体系结构简介.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第3章 进程管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第4章 Linux进程管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第4章 存储管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第6章 Linux存储管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第七章 文件管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第八章 Linux文件管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第九章 设备管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第十章 Linux设备管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第六章 作业管理.ppt
- 《操作系统原理》课程教学资源:教学大纲标准格式.doc