中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Public Key Cryptography2

Public Key cryptography 曹天杰 Tianjie Cao ticao@cumt.edu.cn College of Computer Science and Technology, China University of Mining and Technology, Xuzhou China 中国矿业大学计算机科学与技术学院 2003.6,2
1 曹天杰 Tianjie Cao tjcao@cumt.edu.cn College of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China 中国矿业大学计算机科学与技术学院 2003.6.2 Public Key Cryptography

Diffie-Hellman Diffie-Hellman is a public key distribution scheme First public-key type scheme, proposed in 1976 WDiffie me hellman "New directions in Cryptography", IEEE Trans. Information Theory, IT-22, pp644-654, Nov 1976
2 Diffie-Hellman • Diffie-Hellman is a public key distribution scheme • First public-key type scheme, proposed in 1976. – W Diffie, M E Hellman, "New directions in Cryptography", IEEE Trans. Information Theory, IT-22, pp644-654, Nov 1976

whitfield Diffie Martin Hellman
3

Diffie-Hellman Public-key distribution scheme Cannot be used to exchange an arbitrary message Exchange only a key, whose value depends on the participants(and their private and public key information) The algorithm is based on exponentiation in a finite(Galois)field, either over integers modulo a prime, or a polynomial field
4 Diffie-Hellman • Public-key distribution scheme • Cannot be used to exchange an arbitrary message • Exchange only a key, whose value depends on the participants (and their private and public key information) • The algorithm is based on exponentiation in a finite (Galois) field, either over integers modulo a prime, or a polynomial field

Diffie-Hellman Security relies on the difficulty of computing logarithms in these fields discrete logarithms takes O(e log n loglog n)operations The algorithm two people alice and Bob who wish to exchange some key over an insecure communications channel They select a large prime p( 200 digit), such as(p 1)/2 should also be prime They also select g, a primitive root mod p g is a primitive if for each n from 0 to p-1, there exists some a where ga=n mod p
5 Diffie-Hellman • Security relies on the difficulty of computing logarithms in these fields – discrete logarithms takes O(e log n log log n) operations • The algorithm: – two people Alice and Bob who wish to exchange some key over an insecure communications channel. – They select a large prime p (~200 digit), such as (p- 1)/2 should also be prime – They also select g, a primitive root mod p • g is a primitive if for each n from 0 to p-1, there exists some a where ga = n mod p

Diffie-Hellman ° The algorithm The values of g and p dont need to be secret Alice then chooses a secret number a Bob also chooses a secret number b Alice and Bob compute ya and yB respectively, which are then exchanged °yA= ga mod p y= gb mod p Both alice and bob can calculate the key as AB moa p ya mod p (which B can compute) yB mod p(which a can compute The key may then be used in a private-key cipher to secure communications between a and b
6 Diffie-Hellman • The algorithm – The values of g and p don’t need to be secret – Alice then chooses a secret number a – Bob also chooses a secret number b – Alice and Bob compute yA and yB respectively, which are then exchanged • yA = ga mod p yB = gb mod p – Both Alice and Bob can calculate the key as • KAB = gab mod p = yA b mod p (which B can compute) = yB a mod p (which A can compute) – The key may then be used in a private-key cipher to secure communications between A and B

Diffie-Hellman alice a mod 506 g mod p The private key is: gab mod p where p is a prime and g is a generator of Z
7 Alice g a mod p Bob g b mod p The private key is: g ab mod p where p is a prime and g is a generator of Zp Diffie-Hellman

Diffie-Hellman ° Knows ga,gb,g,andp So we want to find the key k This is believed to be hard If one knows how to compute discrete logs efficiently, then one can break this scheme (and other schemes based on public key cryptography)
8 • Knows g a , gb , g, and p • So we want to find the key, k – k = gab – This is believed to be hard. • If one knows how to compute discrete logs efficiently, then one can break this scheme (and other schemes based on public key cryptography) Diffie-Hellman

Diffie-Hellman Can be expanded to be used with many parties · Can be extended to: Finite fields gfp Elliptic curves Galois field GF Computing discrete logarithms is closely related to factoring. If you can solve the discrete logarithm oblem, then you can factor. (The converse has proble never been proven to be true
9 Diffie-Hellman • Can be expanded to be used with many parties • Can be extended to: – Finite fields GFp – Elliptic curves – Galois field • Computing discrete logarithms is closely related to factoring. If you can solve the discrete logarithm problem, then you can factor. (The converse has never been proven to be true.) GF k 2

El gamal a variant of the diffie-Hellman key distribution scheme, allowing secure exchange of messages Published in 1985 by elgamal in T. ElGamal, a Public Key cryptosystem and a Signature Scheme Based on Discrete Logarithms IEEE Trans. Information Theory, vol IT-31(4), pp469- 472,July1985. Like Diffie-Hellman its security depends on the difficulty of factoring logarithms
10 El Gamal • A variant of the Diffie-Hellman key distribution scheme, allowing secure exchange of messages • Published in 1985 by ElGamal in – T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms", IEEE Trans. Information Theory, vol IT-31(4), pp469- 472, July 1985. • Like Diffie-Hellman its security depends on the difficulty of factoring logarithms
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Public Key Cryptography1.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)overview.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Attacks, Services, and Mechanisms.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)NTHEORY 2 Group Theory and Number.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Lecture 3 Number Theory Basics I.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)HashFunctions.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Digital Signature.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)CRYPTO12.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-L&D.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-DES.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Block ciphers-AES.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)Introduction(主讲:曹天杰).ppt
- 《软件工程》课程学习资料:软件工程思想(林锐).pdf
- 《C++语言基础教程》课程电子教案(PPT教学课件)第6章 类和对象(二).ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第5章 类和对象(一).ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第4章 函数和作用域.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第3章 语句.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第2章 数据类型和表达式.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第1章 C++语言概述.ppt
- 《C++语言基础教程》课程电子教案(PPT教学课件)第9章 C++的I/O流类库.ppt
- 中国矿业大学:《密码学》课程教学资源(PPT讲稿)认证协议(Authentication Protocol)security protocols.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)前言.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第1章 操作系统概论.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第2章 Linux概述.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)Linux程序设计简介.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)(英文版)Linux Development Environment.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)Linux核心体系结构简介.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第3章 进程管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第4章 Linux进程管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第4章 存储管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第6章 Linux存储管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第七章 文件管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第八章 Linux文件管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第九章 设备管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第十章 Linux设备管理.ppt
- 《操作系统原理》课程教学资源(PPT课件讲稿)第六章 作业管理.ppt
- 《操作系统原理》课程教学资源:教学大纲标准格式.doc
- 北京语言文化大学:《C语言程序设计导论》课程教学资源(PPT课件)目录(崔雅娟).ppt
- 北京语言文化大学:《C语言程序设计导论》课程教学资源(PPT课件)第八章 结构及其它.ppt
- 北京语言文化大学:《C语言程序设计导论》课程教学资源(PPT课件)第二章 数据类型、运算符与表达式.ppt