《网络搜索和挖掘关键技术 Web Search and Mining》课程教学资源(PPT讲稿)Lecture 10 Query expansion

Relevance Feedback and Query Expansion Web Search and Mining Lecture 10: Query expansion
Relevance Feedback and Query Expansion Lecture 10: Query expansion Web Search and Mining 1

Relevance Feedback and Query Expansion Recap of the last lecture Evaluating a search engine Benchmarks Precision and recall Results summaries
Relevance Feedback and Query Expansion Recap of the last lecture ▪ Evaluating a search engine ▪ Benchmarks ▪ Precision and recall ▪ Results summaries 2

Relevance Feedback and Query Expansion Recap: Unranked retrieval evaluation Precision and recall Precision fraction of retrieved docs that are relevant P(relevant retrieved Recall fraction of relevant docs that are retrieved P(retrieved relevant Relevant Nonrelevant Retrieved Not Retrieved fn Precision P= tp/tp fp) Recall r=tp/tp+ fn)
Relevance Feedback and Query Expansion 3 Recap: Unranked retrieval evaluation: Precision and Recall ▪ Precision: fraction of retrieved docs that are relevant = P(relevant|retrieved) ▪ Recall: fraction of relevant docs that are retrieved = P(retrieved|relevant) ▪ Precision P = tp/(tp + fp) ▪ Recall R = tp/(tp + fn) Relevant Nonrelevant Retrieved tp fp Not Retrieved fn tn

Relevance Feedback and Query Expansion Recap: A combined measure: F Combined measure that assesses precision/recall tradeoff is F measure weighted harmonic mean F (B2+1)PR a+(1-a) BP+R R People usually use balanced F, measure e,withβ=1orω= Harmonic mean is a conservative average
Relevance Feedback and Query Expansion 4 Recap: A combined measure: F ▪ Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean): ▪ People usually use balanced F1 measure ▪ i.e., with = 1 or = ½ ▪ Harmonic mean is a conservative average P R PR P R F + + = + − = 2 2 ( 1) 1 (1 ) 1 1

Relevance Feedback and Query Expansion This lecture Improving results For high recall E.g. searching for aircraft doesn't match with plane; nor thermodynamic with heat Options for improving results Local methods Relevance feedback Pseudo relevance feedback Global methods Query expansion thesaurus Automatic thesaurus generation
Relevance Feedback and Query Expansion This lecture ▪ Improving results ▪ For high recall. ▪ E.g., searching for aircraft doesn’t match with plane; nor thermodynamic with heat ▪ Options for improving results… ▪ Local methods ▪ Relevance feedback ▪ Pseudo relevance feedback ▪ Global methods ▪ Query expansion ▪ Thesaurus ▪ Automatic thesaurus generation 5

Relevance Feedback and Query Expansion LOCAL METHOD: RELEVANCE FEEDBACK
Relevance Feedback and Query Expansion LOCAL METHOD: RELEVANCE FEEDBACK 6

Relevance Feedback and Query Expansion Local method: Relevance Feedback Relevance feedback Relevance feedback: user feedback on relevance of docs in initial set of results User issues a(short simple query The user marks some results as relevant or non -relevant The system computes a better representation of the information need based on feedback Relevance feedback can go through one or more iterations Idea: it may be difficult to formulate a good query when you dont know the collection well, so iterate
Relevance Feedback and Query Expansion Relevance Feedback ▪ Relevance feedback: user feedback on relevance of docs in initial set of results ▪ User issues a (short, simple) query ▪ The user marks some results as relevant or non-relevant. ▪ The system computes a better representation of the information need based on feedback. ▪ Relevance feedback can go through one or more iterations. ▪ Idea: it may be difficult to formulate a good query when you don’t know the collection well, so iterate Local Method: Relevance Feedback 7

Relevance Feedback and Query Expansion Local method: Relevance Feedback Relevance feedback We will use ad hoc retrieval to refer to regular retrieval without relevance feedback We now look at some examples of relevance feedback that highlight different aspects
Relevance Feedback and Query Expansion Relevance feedback ▪ We will use ad hoc retrieval to refer to regular retrieval without relevance feedback. ▪ We now look at some examples of relevance feedback that highlight different aspects. Local Method: Relevance Feedback 8

Relevance Feedback and Query Expansion Local method: Relevance Feedback Relevance Feedback: Example Image search engine http://nayana.ece.ucsbedu/imsearch/imsearch.html @ New Page 1-Netscape file Edit View Go Bookmarks Tools Window Help 9③⑤ httpinayana.eceucsbeduiv A Home Browsing and Shopping related 607,000 images are indexed and classified in the database Only One keyword is allowed! Search Designed by Baris Sumengen and Shawn Newsam powered by jLAMP2000 ava, Linux, Apache, Msgi, Perl, Windows2000)
Relevance Feedback and Query Expansion Relevance Feedback: Example ▪ Image search engine http://nayana.ece.ucsb.edu/imsearch/imsearch.html Local Method: Relevance Feedback 9

Relevance Feedback and Query Expansion Local method: Relevance Feedback Results for Initial Quel Browse Search Prev Next Random 测 (144473,16458) (144457,252140) (144456,262857 144456,262863) 144457,252134) (144483,265154) 0.0 00 0.0 00 0.0 0.0 00 0.0 00 00 0.0 00 0.0 00 00 0.0 44483.264644 (144483,265153) (144518,257752) (144538,525937) 4456,249611)(14446,250049 0.0 00 0.0 0.0 0.0 00 00 0.0 0.0 00 0.0 0.0
Relevance Feedback and Query Expansion Results for Initial Query Local Method: Relevance Feedback 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京师范大学现代远程教育:《计算机应用基础》课程教学资源(PPT课件讲稿)第一章 计算机常识.ppt
- 中国科学技术大学:《网络信息安全 NETWORK SECURITY》课程教学资源(PPT课件讲稿)UNIX/LINUX 操作系统.ppt
- 哈尔滨工业大学:《语言信息处理》课程教学资源(PPT课件讲稿)机器翻译 I Machine Translation I(主讲:张宇).ppt
- 《操作系统 Operating System》课程教学资源(PPT课件讲稿)概述 Overview.ppt
- 《计算机网络》课程教学大纲(计算机科学与技术、网络工程专业).pdf
- 《计算机组装维修》课程PPT教学课件(实训教程)第3章 主板.ppt
- 山西国际商务职业学院:《数据库应用程序设计》课程教学资源(PPT课件)第7章 VFP6程序设计基础.pps
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第8章 指针.ppt
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第四章 指令系统及汇编语言程序设计(4.6-4.8).ppt
- 《编译原理与技术》课程教学资源(PPT课件讲稿)自底向上分析.ppt
- 西安交通大学:《物联网技术原理》课程教学资源(PPT课件讲稿)第1章 物联网技术概论(主讲:桂小林).ppt
- 贵州师范学院:《高级语言程序设计 Advanced Programming》课程教学资源(PPT课件讲稿)第7章 函数——模块化设计.ppt
- 计算机问题求解(PPT讲稿)分治法与递归.pptx
- 山东大学:《微机原理及单片机接口技术》课程教学资源(PPT课件讲稿)第三章 计算机系统的组成与工作原理(3.1-3.4).ppt
- 《机器学习及应用》课程教学资源(PPT课件讲稿)贝叶斯网络(Bayesian Network).ppt
- SQL Server权限管理(PPT课件讲稿).ppt
- 四川大学:《计算机系统结构》课程教学资源(PPT课件讲稿)第1章 计算机系统结构基本概念(主讲:倪云竹).ppt
- 计算机的维修(PPT课件讲稿)计算机维修的基本知识与实例.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)敏捷软件开发 Agile Software Development.ppt
- 南京大学:《操作系统》课程教学资源(PPT课件讲稿)文件管理(主讲:徐锋).ppt
- 《编译原理》课程教学资源(PPT课件讲稿)第五章 类型检查.ppt
- 西安电子科技大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第六章 存储器设计.pptx
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,3rd edition)Chapter 5 Link Layer.ppt
- 《计算机应用基础》课程教学资源(PPT课件讲稿)第一章 计算机基础知识.ppt
- 《信息安全与管理》课程教学资源(PPT课件讲稿)第六章 公开密钥设施PKI.ppt
- Data Mining Association Analysis——Basic Concepts and Algorithms Chapter 6 Introduction to Data Mining.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第五章 存储器层次结构.ppt
- 电子科技大学:《Unix操作系统基础》课程教学资源(PPT课件)第一章 UNIX操作系统概述、第二章 UNIX使用入门.ppt
- 中国水利水电出版社:《单片机原理及应用》课程PPT教学课件(C语言版)第2章 MCS-51单片机基本结构.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第三章 栈和队列.ppt
- 《网络安全 Network Security》教学资源(PPT讲稿)Topic 3 User Authentication.pptx
- 《C++语言基础教程》课程电子教案(PPT教学课件)教学资源(PPT课件)第2讲 C++语言基础.ppt
- 长春大学:《计算机应用基础》课程教学资源(PPT课件讲稿)第二章 操作系统.ppt
- 南京大学:《数据结构 Data Structures》课程教学资源(PPT课件讲稿)第二章 线性表.ppt
- 浪潮公司:并行程序、编译与函数库简介、应用软件的调优.ppt
- 《C程序设计》课程电子教案(PPT课件讲稿)第二章 基本数据类型及运算.ppt
- 安徽理工大学:《汇编语言》课程教学资源(PPT课件讲稿)第四章 汇编语言程序格式.ppt
- 清华大学:《网络安全 Network Security》课程教学资源(PPT课件讲稿)Lecture 01 Introduction.pptx
- 《数据结构》课程教学资源(PPT课件讲稿)第六章 集合与字典.ppt
- 华东理工大学:《Visual Basic程序设计教程》课程教学资源(PPT课件)第四讲 VB语言基础(运算符、函数和表达式).pps