浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第二章 算法(2.4)矩阵

DEFINITION 1 Matrices 矩阵 A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n matrix The plural of matrix is matrices A matrix with the same number of rows as columns is called equal if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal
M a t r i c e s 矩 阵 DEFINITION 1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m × n matrix. The plural of matrix is matrices. A matrix with the same number of rows as columns is called equal if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal

DEFINITION 2 Matrices 矩阵 The ith row ofa is the 1 x n R 12 Let A= matrix ail, aj,., ain. The a. a.a. jth column of a is then X1 matrix The (i, j)th element or entry of A is the element aii that is, the number in the ith row and jth column ofA. A convenient shorthand notation for expressing the matrix A is to write A=ail, which indicates that a is the matrix with its (i, j)th element equal to a i
M a t r i c e s 矩 阵 DEFINITION 2. Let The (i, j)th element or entry of A is the element aij, that is, the number in the ith row and jth column of A. A convenient shorthand notation for expressing the matrix A is to write A = [aij], which indicates that A is the matrix with its (i, j)th element equal to aij. The ith row of A is the 1 × n matrix [ai1, ai2, …, ain]. The jth column of A is the n × 1 matrix

DEFINTION3 Matrices 矩阵 Leta=ai and b=bi be m X n matrices. The sum of A and b, denoted by a+ B, is the m x n matrix that has ai t bi as its (i,j)th element. In other words,A+ b ai +bil
M a t r i c e s 矩 阵 DEFINITION 3. Let A = [aij] and B = [bij] be m × n matrices. The sum of A and B, denoted by A + B, is the m × n matrix that has aij + bij as its (i, j)th element. In other words, A + B = [aij +bij]

DEFINITION4 Matrices 矩阵 Let a be an m x k matrix and b be a k x n matrix The product of A and B, denoted by ab, is the m X n matrix with (i, jth entry equal to the sum of the products of the corresponding elements from the ith row of a and the jth column of B In ab=cil, then 可=a1b1+ab2+…,+akbk
M a t r i c e s 矩 阵 DEFINITION 4. Let A be an m × k matrix and B be a k × n matrix. The product of A and B, denoted by AB, is the m × n matrix with (i, j)th entry equal to the sum of the products of the corresponding elements from the ith row of A and the jth column of B. In AB = [cij], then Cij = ai1b1j + ai2b2j + … + aikbkj =

DEFINITION 5 Matrices 矩阵 The identity matrix of order n is the n X n matrix I i &,I, where al if i=j and 8-0 if j. Hence 01 了 00
M a t r i c e s 矩 阵 DEFINITION 5. The identity matrix of order n is the n × n matrix In = [ ], where =1 if i = j and = 0 if i ≠ j. Hence

DEFINITIONG Matrices 矩阵 Leta=ai be an m X n matrix. The transgose of A, denoted by a, is the n x m matrix obtained by interchanging the rows and columns ofA. In other words, ifa '=[bil, then bi=ai for I=1, 2,..., n and 1,2,…,,m
M a t r i c e s 矩 阵 DEFINITION 6. Let A = [aij] be an m × n matrix. The transqose of A, denoted by At , is the n × m matrix obtained by interchanging the rows and columns of A. In other words, if At = [bij], then bij = aji for I = 1, 2, … , n and j = 1, 2, … , m

DEFINITON7。 Matrices 矩阵 A square matrix A is called symmetric ifA=A. Thus A=[ail is symmetric if ai=ai forall i and i with 1≤ i<n and1≤j≤n
M a t r i c e s 矩 阵 DEFINITION 7. A square matrix A is called symmetric if A = At . Thus A = [aij] is symmetric if aij = aji for all i and j with 1≤i≤n and 1≤j≤n

DEFINITION 8 Matrices 矩阵 Let a=ail and b= bil be m X n zero-one matrices. Then the join ofA and B is the zero-one matrix with (i, jth entry aibi the join of A and b is denoted by AVB. The meet of A and B is the zero-one matrix with (i, j)th entry a i A bir The meet of A and B is denoted by A∧B
M a t r i c e s 矩 阵 DEFINITION 8. Let A = [aij] and B = [bij] be m × n zero-one matrices. Then the join of A and B is the zero-one matrix with (i, j)th entry aij∨bij. The join of A and B is denoted by A∨B. The meet of A and B is the zero-one matrix with (i, j)th entry aij∧bij. The meet of A and B is denoted by A∧B

DEFINITION 9 Matrices 矩阵 Leta=ai be an m x k zero-one matrix and b=[bil be a k x n zero-one matrix. Then the boolean product ofa and e, denoted by a⊙B, is the m× n matrix with (i,jth entry Icil where C=(an∧b)V(a2^b2)V…V(a∧b3)
M a t r i c e s 矩 阵 DEFINITION 9. Let A = [aij] be an m × k zero-one matrix and B = [bij] be a k × n zero-one matrix. Then the Boolean product of A and B, denoted by A⊙B, is the m × n matrix with (i, j)th entry [cij] where cij = (ai1∧b1j)∨(ai2∧b2j)∨…∨(aik∧bkj)

DEFINITION 10 Matrices 矩阵 Let a be a square zero-one matrix and let r be a positive integer. The rth Boolean power of A is the Boolean product ofr A. The rth Boolean product of a is denoted by ar. Hence A=A⊙A⊙A⊙A⊙AA⊙A⊙A R times (This is well defined since the Boolean product of matrices is associative. We also define a lol to be I
M a t r i c e s 矩 阵 Let A be a square zero-one matrix and let r be a positive integer. The rth Boolean power of A is the Boolean product of r A. The rth Boolean product of A is denoted by A[r]. Hence A[r] = A⊙A⊙A⊙A⊙A⊙A⊙A⊙A (This is well defined since the Boolean product of matrices is associative.) We also define A[0] to be In . DEFINITION 10. R times
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第二章 算法(2.2)数论.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第二章 算法(2.1)算法.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.4-1.5)集合.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.3)谓词与量词 Predicates and Quantifiers.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.2.2)函数.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.1.1)集合.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.2)命题演算 Propositional Equivalences.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.1.3)谓词与量词 Predicates and Quantifiers.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.1.2)命题演算 Propositional Equivalences.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.1.1)命题逻辑.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第一章 命题逻辑(1.1)逻辑.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)引言(陈德人).ppt
- 《运筹学》讲义 第三部分 图与网络分析.doc
- 《运筹学》讲义 第二部分 动态规划(Dymamic Programming).doc
- 《运筹学》讲义 第一部分 线性规划内容框架.doc
- 《数学分析》课程教学资源(教材书籍)第二分册PDF电子书(主编:卓里奇,第六章 积分、第七章 多变量函数和它的极限与连续性、第八章 多变量函数微分学).pdf
- 《数学分析》课程教学资源(教材书籍)第一分册PDF电子书(共五章,1-5章,主编:卓里奇).pdf
- 山东大学:大学数学教程《复变函数与积分变换》课程教学资源(知识点解题)第二章 解析函数(2.3)初等函数(二).ppt
- 山东大学:大学数学教程《复变函数与积分变换》课程教学资源(知识点解题)第二章 解析函数(2.3)初等函数(一).ppt
- 山东大学:大学数学教程《复变函数与积分变换》课程教学资源(知识点解题)第二章 解析函数(2.2)函数解析的充要条件.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第三章 推理与证明方法(3.1)证明方法.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第三章 推理与证明方法(3.2)数学归纳方法.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第三章 二元关系.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第四章 计数原理(4.1-4.2-4.3).ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第四章 计数原理(4.4)排列与组合.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第四章 计数原理(4.5)排列与组合的生成.ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第五章 关系(5.1)关系及其性质(1/2).ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第五章 关系(5.1)关系及其性质(2/2).ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第七章 图论(1/2).ppt
- 浙江大学:《离散数学》课程教学资源(PPT课件讲稿)第七章 图论(2/2).ppt
- 《Mathematica,DeMYSTiFieD》Hoste Mathematica,demystified.pdf
- 《高等数学习题解答》(上册)习题答案.pdf
- 《高等数学习题解答》(下册)习题答案.pdf
- 浙江大学《概率论与数理统计习题全解指南》PDF电子书(共十四章).pdf
- 考研数学讲义:《高等数学复习》学习教程(共十讲).doc
- 武汉大学:《实变函数》课程教学资源(讲义)第一章 集与集类Rn中的点集(1.3)集类.pdf
- 武汉大学:《实变函数》课程教学资源(讲义)第一章 集与集类Rn中的点集(1.4)Rn中的点集.pdf
- 武汉大学:《实变函数》课程教学资源(讲义)习题三.pdf
- 武汉大学:《实变函数》课程教学资源(讲义)第四章 积分 §4.1 积分的定义.pdf
- 武汉大学:《实变函数》课程教学资源(讲义)第五章 微分与不定积分(5.3)绝对连续函数与不定积分.pdf