复旦大学:《网络科学导论 Introduction to Network Science》教学成果_学生翻转课堂展示1 INTRODUCTION TO COMPLEX NETWORKS

INTRODUCTION TO COMPLEX NETWORKS NN-CLASS PRESENTATION GROUP1 How social networks predict epidemics' by Nicholas Christakis
INTRODUCTION TO COMPLEX NETWORKS

Our mission 308"&6’30"the“S”- shape curve; Explain the difference between the two curves (yellow line and red dot); why the yellow curve shifts to left side?
Our mission 3'08'' & 6'30'' the “S”-shape curve; Explain the difference between the two curves (yellow line and red dot) ; why the yellow curve shifts to left side?

CONTENTS PART ONE PART THREE Why the yellow curve shifts to what is an S"-shape curve? left side? PART TWO Differences of two curve
CONTENTS PART ONE PART TWO what is an “S”-shape curve? Differences of two curve. PART THREE Why the yellow curve shifts to left side?

01 what is an“S”- shape curve?
what is an “S”-shape curve?

what is an"S-shape"curve? A sigmoid function is a mathematical function having a characteristic s-shaped curve or sigmoid curve
what is an “S-shape”curve? A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve

s Curves ErDqrersivesuasesU “Ss- shape" curve A wide variety of sigmoid functions have been used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions(which go from 0 to 1), such as the Virtuous cycle what you kno integrals of the logistic field of the job, how distribution. the norma things can be growth distribution and student's t Vicious cycle distribution probability density functions o2012 Juan C, Mendez and whitney Johnson, all rights reserved
“S-shape”curve A wide variety of sigmoid functions have been used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic distribution, the normal distribution, and Student's tdistribution probability density functions

“Ss- shape" curve Logistic function Error function 1 f(a) f(r)=erf(a)=2 1+e-x / hyperbolic tangent Generalised logistic function f(a)=tanh a f(x)=(1+e2)a,a>0 Smoothstep function arctangent function -1 c≤1 f(a)=arctan a (1-2)dn) ∫(1-u2) N≥ sgn(a) c≥1 Gudermannian function Specific algebraic functions f(a)=gd(e) =/ cosh t f(x)= Error function f(a)=erf(c 2 /
“S-shape”curve

S-shape"curve Often sigmoid function refers to the special case of the logistic function shown in the first figure and √1+x defined by the formula tanh(r) arctan(2) S(a) 1+e-x 一gd(票x) 0.5 1+|x Other examples of similar shapes include the gompertz curve (used in modeling systems that 0.5 saturate at large values of x) and 0.5 the ogee curve(used in the of some dams). Sigmoid functions have have domain of all real numbers. with return value monotonically increasing most often from o to 1 or alternative 1 to 1
“ S -shape ”curve Often, sigmoid function refers to the special case of the logistic function shown in the first figure and defined by the formula Other examples of similar shapes include the Gompertz curve (used in modeling systems that saturate at large values of x) and the ogee curve (used in the spillway of some dams). Sigmoid functions have have domain of all real numbers, with return value monotonically increasing most often from 0 to 1 or alternatively from −1 to 1

“Ss- shape" curve a logistic function or logistic curve is a common"S" shape(sigmoid curve), with equation L where 1+e-k(x-20) 0.5 e=the natural logarithm base(also known as Euler's number) x0= the x-value of the sigmoid's midpoint, L= the curve's maximum value. and k= the steepness of the curve The logistic function finds applications in a range of fields, including artificial neural networks, biology (especially ecology ), biomathematics, chemistry, demography, economics, geoscience, mathematical psychology, probability, sociology, political science, linguistics, and statistics
A logistic function or logistic curve is a common "S" shape (sigmoid curve), with equation: where e = the natural logarithm base (also known as Euler's number), x0 = the x-value of the sigmoid's midpoint, L = the curve's maximum value, and k = the steepness of the curve. The logistic function finds applications in a range of fields, including artificial neural networks, biology (especially ecology), biomathematics, chemistry, demography, economics, geoscience, mathematical psychology, probability, sociology, political science, linguistics, and statistics. “S-shape”curve

“Ss- shape" curve Diffusion of innovations is a theory that 100 seeks to explain how, why, and at what rate new ideas and technology spread Rogers proposes that four main elements influence the spread of a new idea: the innovation itself communication channels, time, and a social system this process relies heavily on human capital 0 Innovators Early Early Laggards The innovation must be widely adopted 2.5 Adopters Majority Majority 13.5%34% 34% in order to self-sustain Within the rate of adoption there is a point at which an innovation reaches critical mass
Diffusion of innovations is a theory that seeks to explain how, why, and at what rate new ideas and technology spread. Rogers proposes that four main elements influence the spread of a new idea: the innovation itself, communication channels, time, and a social system. This process relies heavily on human capital. The innovation must be widely adopted in order to self-sustain. Within the rate of adoption, there is a point at which an innovation reaches critical mass. “S-shape”curve
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课堂辩论陈述_反方-Love is all you need.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课堂辩论陈述_正方 scale-free networks are rare.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》课程资源_教学大纲.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第15讲 无网络,不世界.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第15讲 无网络,不世界.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第14讲 计算机软件.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第14讲 计算机软件.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第13讲 PC探秘.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第13讲 PC探秘.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第12讲 0和1.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第12讲 0和1(许成刚).pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第11讲 漫谈大学教育.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第11讲 漫谈大学教育.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第08讲 专业培养方案与教学安排.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第08讲 专业培养方案与教学安排.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第07讲 专业培养目标与人才素质需求.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第07讲 专业培养目标与人才素质需求.pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第06讲 专业解读(讲稿).pdf
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(PPT课件讲稿,2019级)第06讲 专业解读.pptx
- 河南中医药大学:《信息管理与信息系统专业导论》课程教学资源(课件讲稿,2019级)第06讲 专业解读.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学成果_学生翻转课堂展示2 Introduction To Immunization Strategy.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学成果_学生翻转课堂展示3 Magical Social Network.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学成果_学生翻转课堂展示4 Group Report.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课程项目论文_Simulation on SIS model and Immunization Strategy(免疫策略研究).pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课程项目论文_Analysis of temporal networks(时效网络分析).pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课程项目论文_Composition of Variant Regional Music Based on Network(音乐构成的网络).pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课程项目论文_Cooperative behaviors in evolutionary games on complex networks(网络博弈).pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课程项目论文_Starting an artificial 'epidemic' to hinder the other_an inspection on correlated network layers(网络流行病传播).pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》学生课程项目论文_Weighted Correlation Network Analysis of Biological Data(生物网络分析).pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Barabasi love is all you need.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Catastrophic cascade of failures in interdependent_nature08932.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Collective dynamics of small-world networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Community detaction-fast unfolding.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Detection and prediction with time serial based on network science.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Emergence of scaling in random networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Heterogeneous virus spreading-pastor2001.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Kleiberg nature.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Kleinberg algorithm.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Modularity and community structure of networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学参考文献_Nonconsensus dynamic opinion model.pdf