复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第2章 原子结构和原子光谱 Atomic Structure and Spectrum

Physical Chemistry 2021/8/21 Che mistry De partne nt of Fudan University 1
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 1 Physical Chemistry

Phusical chemiatry Chapter II Atomic Structure and Spectrum Hydrogen-like Atom: the model consists of a proton fixed at the origin and an electron that interacts with the proton through a coulombic potential 2 2 H 2 X The three spherical coordinates are associated spherical coordinate with the three spatial quantum numbers 2u r ar Or rasin 60o sin.o 方2r1a2,O 1 十 00 r2sin20 002 jy 十 e+ 2021/8/21 Che mistry De partne nt of Fudan University 2
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 2 Hydrogen-like Atom: the model consists of a proton fixed at the origin and an electron that interacts with the proton through a Coulombic potential. r Ze H V 2 2 2 2 2 2 2 = − + = − − ˆ spherical coordinate = + + + − r Ze E r r r r r r 2 2 2 2 2 2 2 2 2 1 1 1 2 sin sin sin

Phusical chemiatry Chapter II Atomic Structure and Spectrum Note that the angular and radial terms can be separated, we suggest that we can write the wavefunction as a product of radial and angular parts. (;0,)=R(r)Y(0,) Then the angular part is separated into two parts Y(O,d)=(O(0) and three parts are substituted into Schrodinger equation, we have 1 a OR ao sin 6-+ e+ r ar ar osin 6 ae a0 snap ao 2021/8/21 Che mistry De partne nt of Fudan University 3
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 3 Y(,)= ( )() + = − + + r Ze E r r R r R r 2 2 2 2 2 2 1 2 1 1 2 sin sin sin Note that the angular and radial terms can be separated, we suggest that we can write the wavefunction as a product of radial and angular parts. : (r,,)= R(r)Y(,) Then the angular part is separated into two parts: and three parts are substituted into Schrodinger equation, we have

Now the schrodinger equation can be written as three separate equations. 102OR2/2 radial equation E k r ar a 九2 sin e d de sin 6-+ksin 0 colatitude equation o de de 1dΦ azimuthal equation op do 2021/8/21 Che mistry De partne nt of Fudan University
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 4 k r Ze E r r R r R r = + 2 2 2 1 2 2 2 2 2 1 m d d − = 2 2 k m d d d d + = sin sin sin colatitude equation azimuthal equation radial equation Now the Schrodinger equation can be written as three separate equations

Phusical chemiatry Chapter II Atomic Structure and Spectrum We have seen that the azimuthal wave functions are e 2丌 This solution imposes the constraint the m be a quantum number and have values n=0,士1,±2,士3, sin e d de sin e +ksm2=m2k=1(+1) o de When this equation is solved it is found that k must equal l(l+1) with l=0,1,2,3.. and as above n=0,±1,土2,土3,, O(0)=P(cos0)=(1-cos 2 G(cos 0) G(e)=2a,cose 2021/8/21 Che mistry De partne nt of Fudan University 5
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 5 2 2 k m d d d d + = sin sin sin ( ) im e − = 2 1 ( ) P(cos ) ( cos ) G(cos) m 2 2 = = 1− − = = l m n n an G z 0 ( ) cos k = l(l +1) We have seen that the azimuthal wave functions are This solution imposes the constraint the m be a quantum number and have values m = 0, ±1, ±2, ±3, … When this equation is solved it is found that k must equal l(l+1) with l = 0, 1, 2, 3… and as above m = 0, ±1, ±2, ±3, …

1 d 2 dR(r 3(*:):) 2UE b d2R(r).2 dr(r 6 1(1+ 十 十 十 2)R()=0 R()=e·f() 2R() R(r)=0 d f 21df,「b2a(+1) f=0 2 C 2021/8/21 Che mistry De partne nt of Fudan University 6
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 6 ( ) ( ) ( ) 0 1 2 1 2 2 2 2 2 = + − + + R r r l l r e E dr dR r r dr d r 2 2 2 E a = − 2 2 2 Ze b = ( ) ( ) ( ) ( ) 0 2 1 2 2 2 2 = + + + − + − R r r l l r b a dr dR r dr r d R r ( ) ( ) 0 2 2 2 − a R r = dr d R r r → 0 2 2 1 2 2 2 2 = + + − − − − f r l l r a r b dr df r a dr d f ( ) R(r) e f (r) ar = −

Phusical chemiatry Chapter II Atomic Structure and Spectrum d-f 2a 21df,「b2a1(+1) 2 f=0 r dr 2 The coefficient of each power of r must f()=∑br k=0 be zero so we can derive the recursion relation for the constants bk k+1 水-b+a (k+1)-b bk(k+1)+2(k+1)-(+)(k+)k+2)-1(+1) The power series must be terminated a(kmax +1) for some value of k=k = n-1 E unna e anze k+1)h h2 max 2021/8/21 Che mistry De partne nt of Fudan University 7
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 7 0 2 2 1 2 2 2 2 = + + − − − − f r l l r a r b dr df r a dr d f ( ) ( ) = = k 0 k k f r b r ( 1)( 2) ( 1) 1 1 2 1 1 1 + + − + + − = + + + − + − + = + k k l l a k b k k k l l ak b a b b k k ( ) ( ) ( ) ( ) The power series must be terminated for some value of max k n = − k 1 a b (k 1 0 max + − = ) ( ) 2 2 4 2 2 4 2 2 2 2 max 2 2 k 1 z e z e E h n h = − = − + The coefficient of each power of r must be zero, so we can derive the recursion relation for the constants bk

( +1Nk+ 2)-(+1b l=0,1,2,3 a(k+1)-b The coefficients before the terms kl max 2021/8/21 Che mistry De partne nt of Fudan University 8
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 8 ( )( ) ( ) 1 1 1 2 1 + + − + + − + k = bk a k b k k l l b ( ) The coefficients before the terms are zero. k l −1 max max k k 0 ( ) l ar k ar l k k k l k l k R r e b r e r b r − − − + = = = = n l = + (k 1 max ) This is a power series of with terms r n−l −1 l = 0, 1, 2, 3… l, l+1,….n-1

Phusical chemiatry Chapter II Atomic Structure and Spectrum The first few radial wave-functions for the hydrogen atom are listed below: 2 /2 p 2 2 p R21()= exD 2 2r T ,0 3/2 + 3 27 exp 4√2 R 9(3an)3/2 6 p 2√2 exp 133 (3a0)3/2 2021/8/21 Che mistry De partne nt of Fudan University 9
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 9

Phusical chemiatry Chapter II Atomic Structure and Spectrum Physical significance of the solution latomic orbital y(, 0, =r(O(O)U(o There are three quantum numbers for each eigenfunction of a hydrogenlike atom. y n1, 41, my,, dT=0 The orbitals with different quantum numbers are orthogonaL 2021/8/21 Che mistry De partne nt of Fudan University 10
Physical ChemistryI Chapter II Atomic Structure and Spectrum 2021/8/21 Chemistry Department of Fudan University 10 Physical Significance of the Solution 1.atomic orbital ( , , ) R( ) ( ) ( ) n,l,m = r = r 0 2 2 2 1 1 1 = d n ,l ,m n ,l ,m * The orbitals with different quantum numbers are orthogonal. There are three quantum numbers for each eigenfunction of a hydrogenlike atom
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第1章 量子力学基础 Introduction of Quantum Mechanics.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第0章 绪论(主讲:范康年).ppt
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AIII2006期末考卷B.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AIII2006期末考卷A.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AIII2005期末考卷B.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AIII2005期末考卷A.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AIII2004期末考卷A.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AIII2003期末考卷A.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AII2006试题考卷B.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AII2006试题考卷A.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AII2004试题考卷A.doc
- 复旦大学:《物理化学》精品课程教学资源(习题试卷)物理化学AI2006期末考卷A.doc
- 复旦大学:《谱学导论》课程教材文献(物质结构)第一章 量子力学基础和氢原子的状态函数(徐光宪).pdf
- 《物理化学 Physical Chemistry》教材文献:《结构化学基础》PDF电子书(周公度,共十章).pdf
- 复旦大学:《物理化学》精品课程教学大纲 Physical Chemistry(二).docx
- 复旦大学:《物理化学》精品课程教学大纲 Physical Chemistry(一).pdf
- 复旦大学:《谱学导论》课程教学资源(PPT课件)第八章 电子能谱.ppt
- 复旦大学:《谱学导论》课程教学资源(PPT课件)第七章 X射线衍射与荧光光谱 7.3-7.5 §7.3 x射线粉末衍射法 §7.4 电子衍射和中子衍射法简介 §7.5 x射线荧光光谱分析.ppt
- 复旦大学:《谱学导论》课程教学资源(PPT课件)第七章 X射线衍射与荧光光谱 7.2 X射线单晶衍射法.ppt
- 复旦大学:《谱学导论》课程教学资源(PPT课件)第七章 X射线衍射与荧光光谱 7.1 X 射线的产生、性质及特点.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第3章 共价键理论和双原子分子结构 Molecular Structure and Bonding.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第4章 分子对称性和点群.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第5章 多原子分子结构 Polyatomic Molecular Structure.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第6章 分子间相互作用 Interaction between Molecules.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第7章 固态 Solid State.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第0章 绪论(主讲:范康年).ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第1章 量子力学基础.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第2章 原子结构和原子光谱.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第3章 共价键理论和双原子分子结构.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第4章 分子对称性和点群.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第5章 多原子分子结构.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第6章 分子间相互作用.ppt
- 复旦大学:《物理化学》精品课程教学资源(PPT课件讲稿)第7章 固态.ppt
- 湖南大学:《物理化学》课程电子教案(PPT课件讲稿)第七章 统计热力学基础.ppt
- 复旦大学:《谱学导论》课程教材文献(物质结构)第三章 双原子分子的结构.pdf
- 复旦大学:《谱学导论》课程教材文献(物质结构)第五章 多原子分子的结构.pdf
- 复旦大学:《谱学导论》课程教材文献(物质结构)第二章 原子的电子层结构和原子光谱.pdf
- 复旦大学:《谱学导论》课程教材文献(物质结构)第四章 分子对称性与群论初步.pdf
- 复旦大学:《生物化学A》课程教学资源(大纲教案)生物化学A(上)教学大纲.pdf
- 复旦大学:《生物化学A》课程教学资源(大纲教案)生物化学A(下)教学大纲.pdf