清华大学:A Feature Weighting Method for Robust Speech Recognition(Speech Activities in CST)

20 Aug l at CUHK A Feature Weighting Method for Robust speech Recognition Speech Activities in CST Thomas Fang Zheng Center of Speech Technology State Key Lab of Intelligent Technology and systems Department of Computer Science Technology Tsinghua University fzheng@sp.cs.tsinghua.edu.cn,http:/sp.cs.tsinghuaeducn/fzheng
A Feature Weighting Method for Robust Speech Recognition Thomas Fang Zheng Center of Speech Technology State Key Lab of Intelligent Technology and Systems Department of Computer Science & Technology Tsinghua University fzheng@sp.cs.tsinghua.edu.cn, http://sp.cs.tsinghua.edu.cn/~fzheng/ -- Speech Activities in CST 20 Aug 01 at CUHK

Center of Speech Technology a Founded in 1979, named as Speech laboratory a Joined the State Key laboratory of intelligent Technology and Systems in 1999. renamed as Center of speech Technolog ahttp:/sp.cs.tsinghuaeducn/ Center of speech Technology, Tsinghua University Slide 2
Center of Speech Technology, Tsinghua University Slide 2 ❑ Founded in 1979, named as Speech Laboratory ❑ Joined the State Key Laboratory of Intelligent Technology and Systems in 1999, renamed as Center of Speech Technology ❑ http://sp.cs.tsinghua.edu.cn/ Center of Speech Technology

Members of cst in 2001 5 ■ Post doctors 口 Doc tora1 Students 口 Master students Center of speech Technology, Tsinghua University Slide 3
Center of Speech Technology, Tsinghua University Slide 3 5 1 13 7 Faculty Post Doctors Doctoral Students Master Students Members of CST in 2001

Founding resources a State fundamental research plan: NSF, 863, 973, 985 o Collaboration with industries 令 Microsoft 令IBM 冷 Intel 今 Lucent technologies ☆NOka 令 Wenwen SoundTek ☆ keysun Center of speech Technology, Tsinghua University Slide 4
Center of Speech Technology, Tsinghua University Slide 4 ❑ State fundamental research plan: NSF, 863, 973, 985 ❑ Collaboration with industries: ❖ Microsoft ❖ IBM ❖ Intel ❖ Lucent Technologies ❖ Nokia ❖ Weniwen ❖ SoundTek ❖ Keysun ❖ ... Founding Resources

Speech Research Activities a Acoustic Modeling Natural/Spoken Speech s Feature Extraction and Selection Understanding(NLU/SLU 今 Acoustic Modeling e NLU -GLR Based Parsing Accurate fast AM Search , SLU-Kw based robust parsing 令 Robustness 令 Dialogue Manager Speech Enhancement 日 Applications Fractals ☆ Command and control Speaker Adaptation Speaker Normalization Keyword spotting Chinese Pronunciation Modeling 令 Language Learning a Language modeling Input method editor Chinese dictation machine Characteristics of Chinese 令 Spoken dialogues ,s Language Modeling and Search Speaker identification and , LM Adaptation New Word verification Induction 口 Resources Center of speech Technology, Tsinghua University Slide 5
Center of Speech Technology, Tsinghua University Slide 5 Speech Research Activities ❑ Acoustic Modeling ❖ Feature Extraction and Selection ❖ Acoustic Modeling ❖ Accurate & fast AM Search ❖ Robustness ➢ Speech Enhancement ➢ Fractals ➢ Speaker Adaptation ➢ Speaker Normalization ➢ Chinese Pronunciation Modeling ❑ Language Modeling ❖ Characteristics of Chinese ❖ Language Modeling and Search ❖ LM Adaptation & New Word Induction ❑ Natural/Spoken Speech Understanding (NLU/SLU) ❖ NLU - GLR Based Parsing ❖ SLU - KW based robust parsing ❖ Dialogue Manager ❑ Applications ❖ Command and control ❖ Keyword spotting ❖ Language Learning ❖ Input method editor ❖ Chinese dictation machine ❖ Spoken dialogues ❖ Speaker identification and verification ❑ Resources

Feature extraction and selection a Trying to extract discriminative features Trying to select robust feature components from the existing features Center of speech Technology, Tsinghua University Slide 6
Center of Speech Technology, Tsinghua University Slide 6 ❑ Trying to extract discriminative features ❑ Trying to select robust feature components from the existing features Feature Extraction and Selection

a Introduction human does not always use an identical feature to recognize objects s It is often that the feature components being used vary with the objects to be recognized This is feature selection after the feature extraction feature selection can be regarded as a special case of feature weighting Before going to the topic let's see a problem at first Center of speech Technology, Tsinghua University Slide 7
Center of Speech Technology, Tsinghua University Slide 7 ❑ Introduction ❖ Human does not always use an identical feature to recognize objects. ❖ It is often that the feature components being used vary with the objects to be recognized. ❖ This is feature selection after the feature extraction. ❖ Feature selection can be regarded as a special case of feature weighting. ❖ Before going to the topic, let’s see a problem at first

Room 1 Room 2 o0O0。O m八m B X 口 A Problem 冷 Conditions Two opaque and completely separated rooms are very close to each other Room 1 contains 3 switches and room 2 contains 3 lights Each switch is corresponding to one and only one light You can switch on/off any switch for any times But you can only enter each room for only once , Goal: finding which switch is corresponding to which light Center of speech Technology, Tsinghua University Slide 8
Center of Speech Technology, Tsinghua University Slide 8 ❑ A Problem ❖ Conditions: ➢ Two opaque and completely separated rooms are very close to each other. ➢ Room 1 contains 3 switches and Room 2 contains 3 lights. ➢ Each switch is corresponding to one and only one light. ➢ You can switch on/off any switch for any times. ➢ But you can only enter each room for only once. ❖ Goal: finding which switch is corresponding to which light. Room 1 Room 2 A B C X Y Z

Room 1 Room 2 “ O0 OOOO m八m B X Y a The answer(Step 1) Unseen 令 Actions Turn on switch a Wait fora couple of minutes Turn off Switch A Center of speech Technology, Tsinghua University Slide g
Center of Speech Technology, Tsinghua University Slide 9 Unseen A B C X Y Z Room 1 Room 2 ❑ The Answer (Step 1) ❖ Actions: ➢ Turn on Switch A. ➢ Wait for a couple of minutes ... ➢ Turn off Switch A

Room 1 Room 2 T/( B X Y 口 The answer(Step2) Unseen 令 Actions: Turn on Switch B Immediately go to Room 2 Center of speech Technology, Tsinghua University Slide 10
Center of Speech Technology, Tsinghua University Slide 10 Unseen A B C X Y Z Room 1 Room 2 ❑ The Answer (Step 2) ❖ Actions: ➢ Turn on Switch B. ➢ Immediately go to Room 2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京师范大学现代远程教育:《计算机应用基础》课程教学资源(PPT课件讲稿)第2章 计算机网络应用.ppsx
- 《Java网站开发》教学资源(PPT讲稿)第9章 过滤器和监听器技术.ppt
- 长春大学:《计算机应用基础》课程教学资源(PPT课件讲稿)第一章 计算机基础知识(崔天明).ppt
- 合肥工业大学:《网络安全概论》课程教学资源(PPT课件讲稿)第2讲 密码学简介(主讲:苏兆品).ppt
- 《计算机网络与因特网 Computer Networks and Internets》课程教学资源(PPT课件讲稿)Part II 物理层(信号、媒介、数据传输).ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)第三章 栈与队列.ppt
- 清华大学:An Efficient Trie-based Method for Approximate Entity Extraction with Edit-Distance Constraints.pptx
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 5 互斥与同步(Mutual Exclusion and Synchronization)5.4 Monitors 5.5 Message Passing 5.6 Readers/Writers Problem.ppt
- 上海交通大学:《程序设计》课程教学资源(PPT课件讲稿)第6章 过程封装——函数.ppt
- 《3ds Max》教学资源(PPT课件)第4章 基本三维模型的创建.ppt
- 南京大学:复杂系统学习(PPT课件讲稿)佩特里网 Petri Nets.pptx
- 香港科技大学:《软件开发》教学资源(PPT课件讲稿)Functions.ppt
- 《计算机文化基础》课程教学资源(PPT课件讲稿)第二章 Windows XP操作系统.ppt
- 电子科技大学:《计算机操作系统》课程教学资源(PPT课件讲稿)第五章 设备管理.ppt
- 山东大学:语音识别技术(PPT课件讲稿)自动语音识别 Automatic Speech Recognition.pptx
- 数据集成 Data Integration(PPT讲稿)成就与展望 Achievements and Perspectives.ppt
- 北京师范大学:拓扑序及其量子相变(PPT课件讲稿)Topological Order and its Quantum Phase Transition.ppt
- 计算机系教学资源(PPT课件讲稿)信息安全与保密技术.ppt
- 汤姆森 Thomson:利用Web of Knowledge对课题进行检索、分析、跟踪、管理.ppt
- 西安电子科技大学:《微机原理与接口技术》课程教学资源(PPT课件讲稿)第九章 定时/计数器8253.pptx
- 西安电子科技大学:《神经网络与模糊系统》课程教学资源(PPT课件讲稿)Chapter 6 结构和平衡 Architecture and Equilibria.ppt
- 北京大学:人工神经网络(PPT课件讲稿)Artificial Neural Networks,ANN.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第4章 处理器(CPU).ppt
- 吉林大学:《C语言》课程教学资源(PPT课件讲稿)第6章 利用数组处理批量数据.ppt
- 《Vb程序设计教程》课程教学资源(PPT课件讲稿)第三章 VB语言基础.pps
- 安徽理工大学:《汇编语言》课程教学资源(PPT课件讲稿)第七章 高级汇编语言技术(主讲:李敬兆).ppt
- 《软件质量与测试》课程教学资源(PPT大纲课件,目录版).pptx
- 香港理工大学:Discovering Classification Rules.ppt
- 北京科技大学:物联网知识体系和学科建设(PPT讲稿,王志良).ppt
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)傅里叶分析与卷积 Fourier Analysis and Convolution.pptx
- 沈阳理工大学:《单片机C语言应用程序设计》课程PPT教学课件(单片机C语言编程)04 C51编程设计(廉哲).pptx
- 《软件工程 Software Engineering》教学资源:课程教学大纲.pdf
- 上海交通大学:《编译器构造》课程教学资源(PPT讲稿,马融)Compiler.pptx
- 《数字图象处理》课程教学资源(PPT课件讲稿)第七章 邻域运算.ppt
- 北京航空航天大学:《数据挖掘——概念和技术(Data Mining - Concepts and Techniques)》课程教学资源(PPT课件讲稿)Chapter 03 Data Preprocessing.ppt
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第一章 概述(谢希仁).ppt
- 上海交通大学:Mining Massive Datasets(PPT讲稿).ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)动态规划.pptx
- 《数据结构》课程教学资源:课程教学资源(PPT课件讲稿)第九章 查找表.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)抽象数据类型 Abstract Data Types.ppt