上海交通大学:Mining Massive Datasets(PPT讲稿)

Classification Mining Massive Datasets Wu-Jun li Department of Computer Science and Engineering Shanghai Jiao Tong University Lecture 9: Supervised Learning --Classification
Classification 1 Wu-Jun Li Department of Computer Science and Engineering Shanghai Jiao Tong University Lecture 9: Supervised Learning -- Classification Mining Massive Datasets

Classification Classification Problem Spam filtering: classification task From: Subject: real estate is the only way. gem oalvgkay Anyone can buy real estate with no money down Stop paying rent TODAY There is no need to spend hundreds or even thousands for similar courses I am 22 years old and i have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook Change your life now! 二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二==二二二二=二 Click below to order: http://www.wholesaledaily.com/sales/nmd.htm 二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二=二二二=二
Classification 2 Spam filtering: classification task From: "" Subject: real estate is the only way... gem oalvgkay Anyone can buy real estate with no money down Stop paying rent TODAY ! There is no need to spend hundreds or even thousands for similar courses I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook. Change your life NOW ! ================================================= Click Below to order: http://www.wholesaledaily.com/sales/nmd.htm ================================================= Classification Problem

Classification Classification Problem Supervised Learning ---Classification Given: a description of a point, dEX A fixed set of classes C={c1,C2y…,c} a training set d of labeled points with each labeled document(d,c)∈X×C Determine: a learning method or algorithm which will enable us to learn a classifier f: X>C For a test point d, we assign it the class f(dec
Classification 3 Supervised Learning --- Classification ▪ Given: ▪ A description of a point, d X ▪ A fixed set of classes: C = {c1 , c2 ,…, cJ } ▪ A training set D of labeled points with each labeled document ⟨d,c⟩∈X×C ▪ Determine: ▪ A learning method or algorithm which will enable us to learn a classifier f:X→C ▪ For a test point d, we assign it the class f(d) ∈ C Classification Problem

Classification Classification Problem Document classification planning anguage Dat proof nelligen (An (Programming) (HCD Classes ML Planning Semantics Garb. Coll.I Multimedia GUI Training learning planning programming garbage Dat intelligence temporal semantics collection algorithm reasoning language memor reinforcement plan root pr optimization network language region Note: in real life there is often a hierarchy, not present in the above problem statement; and also you get papers on ML approaches to Garb. Coll.)
Classification 4 ML Planning Semantics Garb.Coll. Multimedia GUI planning temporal reasoning plan language... programming semantics language proof... learning intelligence algorithm reinforcement network... garbage collection memory optimization region... “planning language proof intelligence” Training Data: Test Data: Classes: (AI) Document Classification (Programming) (HCI) ... ... (Note: in real life there is often a hierarchy, not present in the above problem statement; and also, you get papers on ML approaches to Garb. Coll.) Classification Problem

Classification Classification Problem More classification Examples Many search engine functionalities use classification Assigning labels to documents or web-pages Labels are most often topics such as yahoo- categories finance,"sports," "news>world>asia>business Labels may be genres editorials""movie-reviews"news Labels may be opinion on a person/product like hate "neutral Labels may be domain-specific interesting-to-me": not-interesting-to-me contains adult language: doesn't language identification: English, French, Chinese, search vertical: about linux versus not a ink spam": "not link spam
Classification 5 More Classification Examples Many search engine functionalities use classification ▪ Assigning labels to documents or web-pages: ▪ Labels are most often topics such as Yahoo-categories ▪ "finance," "sports," "news>world>asia>business" ▪ Labels may be genres ▪ "editorials" "movie-reviews" "news” ▪ Labels may be opinion on a person/product ▪ “like”, “hate”, “neutral” ▪ Labels may be domain-specific ▪ "interesting-to-me" : "not-interesting-to-me” ▪ “contains adult language” : “doesn’t” ▪ language identification: English, French, Chinese, … ▪ search vertical: about Linux versus not ▪ “link spam” : “not link spam” Classification Problem

Classification Classification methods Perceptrons (refer to lecture 9.2 Naive bayes kNN Support vector machine(svm
Classification 6 Classification Methods ▪ Perceptrons (refer to lecture 9.2) ▪ Naïve Bayes ▪ kNN ▪ Support vector machine (SVM)

Classification Naive Bayes Bayesian Methods Learning and classification methods based on probability theory Bayes theorem plays a critical role in probabilistic learning and classification Builds a generative model that approximates how data is produced Uses prior probability of each category given no information about an item Categorization produces a posterior probability distribution over the possible categories given a description of an item
Classification 7 Bayesian Methods ▪ Learning and classification methods based on probability theory. ▪ Bayes theorem plays a critical role in probabilistic learning and classification. ▪ Builds a generative model that approximates how data is produced ▪ Uses prior probability of each category given no information about an item. ▪ Categorization produces a posterior probability distribution over the possible categories given a description of an item. Naïve Bayes

Classification Naive Bayes Bayes Rule for classification or a point d and a class c P(c,d)=P(cldp(a=P(dCPc P(cd) P(ac)p(c) P(d)
Classification 8 Bayes’ Rule for classification ▪ For a point d and a class c P(c,d) = P(c | d)P(d) = P(d | c)P(c) P(c | d) = P(d | c)P(c) P(d) Naïve Bayes

Classification Naive Bayes Naive Bayes classifiers Task: Classify a new point d based on a tuple of attribute values into one of the classes c∈C XI CMAP =argmax P(c,Ix,,x,,.,xn) C;∈ P(x12x2,…,xnc,)P(C,) argmaX C argmax P(X,X MAPis“ maximum a posteriori”= most likely class
Classification 9 Naive Bayes Classifiers Task: Classify a new point d based on a tuple of attribute values into one of the classes cj C d = x1 , x2 ,, xn argmax ( | , , , ) j 1 2 n c C MAP c P c x x x j = ( , , , ) ( , , , | ) ( ) argmax 1 2 1 2 n n j j c C P x x x P x x x c P c j = argmax ( , , , | ) ( ) 1 2 n j j c C P x x x c P c j = MAP is “maximum a posteriori” = most likely class Naïve Bayes

Classification Naive Bayes Naive Bayes Classifier Naive bayes assumption P() Can be estimated from the frequency of classes in the training examples P O(X/n. C))parameters Could only be estimated if a very very large number of training examples was available Naive bayes Conditional Independence Assumption assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities P(x c)
Classification 10 Naïve Bayes Classifier: Naïve Bayes Assumption ▪ P(cj ) ▪ Can be estimated from the frequency of classes in the training examples. ▪ P(x1 ,x2 ,…,xn |cj ) ▪ O(|X|n•|C|) parameters ▪ Could only be estimated if a very, very large number of training examples was available. Naïve Bayes Conditional Independence Assumption: ▪ Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities P(xi|cj ). Naïve Bayes
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子工业出版社:《计算机网络》课程教学资源(第五版,PPT课件讲稿)第一章 概述(谢希仁).ppt
- 北京航空航天大学:《数据挖掘——概念和技术(Data Mining - Concepts and Techniques)》课程教学资源(PPT课件讲稿)Chapter 03 Data Preprocessing.ppt
- 《数字图象处理》课程教学资源(PPT课件讲稿)第七章 邻域运算.ppt
- 上海交通大学:《编译器构造》课程教学资源(PPT讲稿,马融)Compiler.pptx
- 《软件工程 Software Engineering》教学资源:课程教学大纲.pdf
- 沈阳理工大学:《单片机C语言应用程序设计》课程PPT教学课件(单片机C语言编程)04 C51编程设计(廉哲).pptx
- 中国科学技术大学:《信号与图像处理基础 Signal and Image Processing》课程教学资源(PPT课件讲稿)傅里叶分析与卷积 Fourier Analysis and Convolution.pptx
- 北京科技大学:物联网知识体系和学科建设(PPT讲稿,王志良).ppt
- 香港理工大学:Discovering Classification Rules.ppt
- 《软件质量与测试》课程教学资源(PPT大纲课件,目录版).pptx
- 安徽理工大学:《汇编语言》课程教学资源(PPT课件讲稿)第七章 高级汇编语言技术(主讲:李敬兆).ppt
- 《Vb程序设计教程》课程教学资源(PPT课件讲稿)第三章 VB语言基础.pps
- 吉林大学:《C语言》课程教学资源(PPT课件讲稿)第6章 利用数组处理批量数据.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第4章 处理器(CPU).ppt
- 北京大学:人工神经网络(PPT课件讲稿)Artificial Neural Networks,ANN.ppt
- 西安电子科技大学:《神经网络与模糊系统》课程教学资源(PPT课件讲稿)Chapter 6 结构和平衡 Architecture and Equilibria.ppt
- 清华大学:A Feature Weighting Method for Robust Speech Recognition(Speech Activities in CST).ppt
- 北京师范大学现代远程教育:《计算机应用基础》课程教学资源(PPT课件讲稿)第2章 计算机网络应用.ppsx
- 《Java网站开发》教学资源(PPT讲稿)第9章 过滤器和监听器技术.ppt
- 长春大学:《计算机应用基础》课程教学资源(PPT课件讲稿)第一章 计算机基础知识(崔天明).ppt
- 东南大学:《数据结构》课程教学资源(PPT课件讲稿)动态规划.pptx
- 《数据结构》课程教学资源:课程教学资源(PPT课件讲稿)第九章 查找表.ppt
- 南京大学:《面向对象技术 OOT》课程教学资源(PPT课件讲稿)抽象数据类型 Abstract Data Types.ppt
- 中国科学技术大学:《并行计算 Parallel Computing》课程教学资源(PPT课件讲稿)并行编译简介.ppt
- 《单片机原理及应用》课程教学资源(PPT课件讲稿)第6章 AT89S52单片机的串行口.ppt
- 上海交通大学:《程序设计》课程教学资源(PPT课件讲稿)第4章 循环控制.ppt
- 上海交通大学:《通信网络》课程PPT教学课件(Communication Networks)Introduction(主讲:叶通).pptx
- 北京师范大学:《多媒体技术基础》课程教学资源(PPT课件讲稿)第二章 数字图像(曾兰芳).ppt
- 利用EXCEL进行数据分析与图表处理(PPT讲稿).pptx
- 上海交通大学:《程序设计》课程教学资源(PPT课件讲稿)第9章 模块化开发.ppt
- 《计算科学基础研究》课程教学资源(PPT课件讲稿)类的定义.ppt
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第九章 机器无关的优化(赵建华).ppt
- 《电子商务概论》课程教学资源(PPT课件讲稿)第一章 电子商务基础知识(主讲:贾朝辉).pptx
- 《操作系统》课程教学资源(PPT课件讲稿)内存管理 Memory Management.ppt
- 沈阳理工大学:《大学计算机基础》课程教学资源(PPT课件讲稿)第3章 编辑排版软件(Microsoft Word 2000).pps
- 《C语言程序设计》课程电子教案(PPT课件讲稿)第4章 算法控制结构.ppt
- 《数据结构》课程教学资源(PPT课件讲稿)第二章 线性表.ppt
- 上海交通大学:《数字图像处理 Digital Image Processing》课程教学资源(PPT课件讲稿,第三版)Chapter 12 Object Recognition.pptx
- 《The C++ Programming Language》课程教学资源(PPT课件讲稿)Lecture 01 From C to C++.ppt
- 《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第一讲 绪论.ppt