冷原子物理和量子信息学术讨论(PPT讲稿)Exact solvability and unified analytical treatments to qubit-oscillator system

《第六届全国冷原子物理和量子信息青年学者学术讨论会》 2012年8月14日-18日,浙江师范大学 Exact solvability and unified analvtical treatments to qu bit-oscillator system Qing-Hu Chen (陈庆虎) Center for Statistical and Theoretical Condensed Matter Physics Zhejiang Normal University, Jinhua 321004, China department of Physics, Zhejiang University, HangZhou 310027, China arXiv: 1204.3668, Phys. Rev. A, in press arXiy:1204.0953 arxiv;1203.2410
Exact solvability and unified analytical treatments to qubit-oscillator system Qing-Hu Chen (陈 庆 虎 ) Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China & Department of Physics, Zhejiang University, Hangzhou 310027, China 《第六届全国冷原子物理和量子信息青年学者学术讨论会》 2012年8月14日-18日, 浙江师范大学 本人 1966 年出生, 早就不属于青年学者 向青年朋友请教了 arXiv: 1204.3668, Phys. Rev. A, in press arXiv: 1204.0953 arXiv: 1203.2410

Collaborators Prof Ke-Lin wans g Department of modern physics, University of Science and technology of china, Hefe 230026 Chen Wang(Ph. D student Department of Physics, Zhejiang University, Hangzhou 310027 Dr. Yu-Yu Zhang ( Former Ph D student) Center for Modern Physics, Chongqing University, Congqing 400044 Shu he( ms student), Prof. Tao Liu School of Science, Southwest University of Science and Technology, Mianyang 621010 Prof shi-Yao Zhu Beijing Computational Science Research Center, Beijing 100084
Prof. Ke-Lin Wang Department of Modern Physics, University of Science and Technology of China, Hefei 230026 Chen Wang (Ph. D student) Department of Physics, Zhejiang University, Hangzhou 310027 Dr. Yu-Yu Zhang (Former Ph. D student) Center for Modern Physics, Chongqing University, Congqing 400044 Shu He ( MS student), Prof. Tao Liu School of Science, Southwest University of Science and Technology, Mianyang 621010 Prof. Shi-Yao Zhu Beijing Computational Science Research Center, Beijing 100084 Collaborators

Brief introduction to quantum rabi model (Qrm) Rabi, Phys.Rev.49,324(1936)51,652(1937) u The interaction of two-level atom(qubit)with a bosonic mode H==.+oa a+gla +ao o is the resonant frequency of the cavity, A is thethe transition frequency of the qubit and g is the coupling strength, Oxz is usual Pauli matrix, a(a) is the boson annihilation(creation )operator. d=A-0 is the detuning quantum Rabi model( Cavity QED) qubit-oscillator system (Circuit QED) In the fully quantum mechanical version Analytically unsolvable a Jaynes-Cummings (JC)model(1963)under the rotating-wave approximation (RWA) is analytically solvable. The counter rotating terms(CrTs) is omitted H=0+aa+g(ao+.+g(ao +ao_) RWA CRTS
Brief introduction to quantum Rabi model (QRM) □ The interaction of two-level atom (qubit) with a bosonic mode ( ) 2 H a a g a a z x + + = + + + ω is the resonant frequency of the cavity, Δ is the the transition frequency of the qubit, and g is the coupling strength, σx,z is usual Pauli matrix, a(a+) is the boson annihilation (creation) operator. δ=Δ- ω is the detuning. quantum Rabi model (Cavity QED) qubit-oscillator system (Circuit QED) In the fully quantum mechanical version Analytically unsolvable ! Rabi, Phys. Rev. 49, 324 (1936); 51, 652 (1937). ( ) 2 H a a g a a z + + − + = + + + g a a ( ) + + ++ − RWA CRTs □ Jaynes-Cummings (JC) model (1963) under the rotating-wave approximation (RWA) is analytically solvable. The counter rotating terms (CRTs) is omitted

PhysIcS Physics4,68(2011 Viewpoint The dialogue between quantum light and matter Enrique Solano Departamento de Quimica Fisica, Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, Apartado 644, 48080 Bilbao Dain The Rabi model (rm) describes the simplest interaction between light and matter Although this model has had an impressive impact on many fields of physics ---many physicists may be surprised to know that the quantum Rabi model has never been solved exactly. I other words, it has not been possible to write a closed-form, analytical solution for it
The Rabi model (RM) describes the simplest interaction between light and matter. Although this model has had an impressive impact on many fields of physics --- many physicists may be surprised to know that the quantum Rabi model has never been solved exactly. In other words, it has not been possible to write a closed-form, analytical solution for it

Outline 1. Exact solution for Qubit-Oscillator Systems (1) Numerically exact (2)Analytically exact B)Applications No explicitly expression Em=E(n, E, 4,,g) 2. Unified analytical treatments to qubit-oscillator systems explicitly expression but complicated 3. Concise first-order corrections to the rwa explicitly expression but very simple
Outline 1. Exact solution for Qubit-Oscillator Systems (1) Numerically exact (2) Analytically exact (3) Applications No explicitly expression 2. Unified analytical treatments to qubit-oscillator systems explicitly expression but complicated 3. Concise first-order corrections to the RWA explicitly expression but very simple ( ) ( , , , , ) n E E n g =

Part l, Exact solution to the quantum Rabi model (Qrm) D In RWA, the n-th eigenstate isp -/a,In> ,n+1> En=O(n+ Rn at resonance, 0=0 Ern=a(n+o+=R E,n=O(m+)-g√hn+1 6=△-O,Rn=√62+482(n+1) E2n=0(n+3)+gVn+1 -sin e, n) 1(-|n) cos n+1 n+1 cose,n) In 2. sin n+ 1) 2n√2(n+ gvn+ △ cOS (R-6)2+4(m+1) The ground-state 0.个
| | 0,1,2. | 1 n n n a n n b n = = + □ In RWA, the n-th eigenstate is The ground-state 0 0 2 | | 0, E = − = ( ) 1, 2 , 2 2 1, 2 , 2 2 1 1 ( ) 2 2 1 1 ( ) 2 2 , 4 ( 1) sin | | cos | 1 cos | | sin | 1 2 1 cos 4 ( 1) n n n n n n n n n n n n n E n R E n R R g n n n n n g n R g n = + − = + + = − = + + − = + = + + = − + + at resonance, δ=0 1, 2, 1, 2, 1 ( ) 1 2 1 ( ) 1 2 1 | | 2 | 1 1 | | 2 | 1 n n n n E n g n E n g n n n n n = + − + = + + + − = + = + Part I, Exact solution to the Quantum Rabi model (QRM)

Vacuum Rabi splitting in the JC model The atom is excited by the operator Measured transmission spectrum showing the vacuum Rabi mode splitting S S GS 1 |2) 0 VIGS e o 92/4 (e,O)+|g,0))/2 0.1 O))/2 spontaneous emission to Gs state 0.04 o 0.02 data The emission spectrum has two peaks with 6026.036.046.056.066.07 equal height(the distance of the two peaks Frequency, VRF(GHz) 2g is the vacuum Rabi splitting) Walraff et al. nature 431 2g is the energy difference of the lst and 2nd 162(2004 eigenstates
( ) ( ) , 0 , 0 ,0 ,0 / 2 ,0 ,0 / 2 V e g g e GS g V GS e e g e g = + = = = + − The atom is excited by the operator spontaneous emission to GS state The emission spectrum has two peaks with equal height (the distance of the two peaks, 2g, is the vacuum Rabi splitting). 2g is the energy difference of the 1st and 2nd eigenstates Vacuum Rabi splitting in the JC model Wallraff et al., Nature 431, 162(2004). Measured transmission spectrum showing the vacuum Rabi mode splitting

The collapses and revivals in the evolution of the atomic population inversion a()|n) If initially in Photonic Fock state e,n> b()|n+1) This is the quantum rabi oscillation. a(o)=cos (gtV/n+I b(O)=sin(g√n+ If initially in photonic coherent state (0)>ag>e aa+-a2/2 10>g> n==|a|2 population inversion under rWa can be evaluated analytically C 12n plt) -|a2 ∑cos(g、m+1)=F(On) M.O. Scully and M. S. Zubairy, Quantum optic Cambridge University Press, Cambridge, 1997
The collapses and revivals in the evolution of the atomic population inversion 2 / 2 0 | (0) | | | 0 | a g e g + − − = = 2 n a a | | | | + = = 2 2 | | | | ( ) cos(2 1) ( ) ! n rwa n p t e gt n F t n − = + = Population inversion under RWA can be evaluated analytically M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997 If initially in Photonic Fock state |e, n> This is the quantum Rabi oscillation. ( ) ( ) 2 2 2 2 ( ) | | ( ) | 1 ( ) cos 1 ( ) sin 1 a t n t b t n a t gt n b t gt n = + = + = + If initially in photonic coherent state

1.01 Collapses evivals 06 02 w(C) 02h 0.6 10 10 20 z
collapses revivals

Strong coupling Qubit-Oscillator System d. c. SQUID measurement lines Resonator 2C C 米 50 mK 000 Deppe et al, Nature physics 4, 686(2008) Circuit quantum electrodynamics(QED) system
Strong coupling Qubit-Oscillator System Deppe et al., Nature physics 4, 686(2008) Circuit quantum electrodynamics (QED) system
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- Early Quantum Theory and Models of Atom(PPT讲稿)Early Quantum Theory and Models of Atom.ppt
- 太原师范学院:物理系科学教育专业实验课教学大纲汇编.doc
- 太原师范学院:本科毕业生教育实习教案(高二物理——变压器).doc
- 基本粒子和粒子的相互作用、守恒定律和对称原理.ppt
- 《原子物理学》课程PPT教学课件(讲稿)第三章 量子力学初步.ppt
- 《电磁场与电磁波》课程教学资源(PPT课件讲稿)第6章 均匀平面波的反射与透射.ppt
- 北京师范大学物理系:关于黑洞与时间性质的若干思考(PPT讲稿,赵峥).ppt
- 郑州大学:《大学物理》课程教学资源(PPT课件)第十五章 量子物理 第四讲 氢原子及现代技术的量子理论简述.pptx
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第14讲 静电场 §2.2 静电势的多极展开.ppt
- 中国科技大学:加速器与同步辐射(PPT讲稿).ppt
- 中国科学技术大学:《等离子体物理学》课程教学资源(PPT课件讲稿,负责人:李毅).ppt
- 中国科学技术大学:加速器及同步辐射(PPT讲稿)第一部分 加速器及其应用(主讲:裴元吉).ppt
- 中国科学技术大学研究生院:宇宙的量子诞生(PPT讲稿).ppt
- 中国科学技术大学:《工程光学》课程教学资源(PPT课件讲稿)第五章 光度学基础.ppsx
- 武汉物理与数学研究所:To resolve the mystery of superfluidity and supersolidity(PPT讲稿)superfluidity as a Bose exchange effect.ppt
- 《普通物理学》课程教学资源(PPT课件讲稿)第八章 麦克斯韦方程组和电磁场.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第1讲 课程绪论(主讲:宗福建).ppt
- 中国科学技术大学:夸克禁闭和渐近自由(PPT讲稿,中国科学院高能物理研究所:黄涛).ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第25讲 狭义相对论 §3.1 相对论的实验基础.ppt
- 《物理实验》课程教学资源(PPT课件讲稿)第一章 测量误差与实验不确定度.ppt
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第13讲 静电场 §2.5 格林函数法.ppt
- 《高分子物理》课程教学资源(PPT课件讲稿)第七章 聚合物的粘弹性 The Viscoelasticity of Polymers.ppt
- 《大学物理》课程电子教案(PPT教学课件)第二章 质点动力学(主讲:杨敏).ppt
- 《大学物理》课程PPT教学课件(热学 Thermodynamics)第8章 气体动理论 The theory of molecular motion of gas.ppt
- 《大学物理》课程教学资源(PPT课件讲稿)第20章 光的干涉和衍射(Interference & diffraction of light).ppt
- 《大学物理》课程电子教案(PPT教学课件)第十一章 波动光学.ppt
- 中国科学技术大学:《量子力学》课程教学资源(课件讲义)第一章 波函数(主讲:杨焕雄).pdf
- 合肥工业大学出版社:《电磁场与电磁波》课程教学资源(PPT课件讲稿)第一章 矢量分析(主编:孙玉发、郭业才).ppt
- 《大学物理》课程PPT教学课件(力学)第一章 质点运动学.ppt
- 武汉大学:《数学物理方法》课程教学资源(PPT讲稿)浅谈数学物理方法课程的学习 How to study Mathematical Methods in Physics(主讲:姚端正).ppt
- 《磁性物理学》课程教学资源(PPT课件讲稿)宏观物质的磁性、磁性体的热力学基础.pptx
- 西安电子科技大学:《数学物理方法概论》课程教学资源(PPT课件讲稿)第一章 微分几何(主讲:白璐).ppt
- 《原子物理》课程教学资源(PPT课件讲稿)原子的光谱及原子结构.ppt
- High Energy cosmic-Radiation Detection(HERD)Facility onboard China’s Space Station.pptx
- 《量子力学》课程教学资源(学习资料)考试大纲.doc
- 山东大学物理学院:《电动力学》课程教学资源(PPT课件讲稿)第23讲 电磁波的辐射 §5.1 讯变电磁场的矢势和标势.ppt
- 《大学物理》课程教学资源(PPT讲稿)16 波动(习题,含解答).ppt
- 上海交通大学:密立根油滴实验(PPT课件讲稿)基本电荷测定.ppt
- 东南大学:对称能与非核子自由度及其它(专题PPT,物理系:蒋维洲).ppt
- 光学显微镜的使用方法(实验PPT讲稿).ppt