西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 24 Physical Optics

UNIVERSITY PHYSICS II CHAPTER 24 Physical optics s24.1 Light waves and the coherent condition of waves 1. Light waves Light wave is a small part of the whole electromagnetic wave spectrum. Wavelength(m) 700mm650600550500450400mm
1 1. Light waves §24.1 Light waves and the coherent condition of waves Light wave is a small part of the whole electromagnetic wave spectrum

824.1 Light waves and the coherent condition of waves 2. The interference phenomena of waves 824.1 Light waves and the coherent condition of waves 3. Coherence and the conditions of coherence OA superposition of waves may give rise to variations in the resulting amplitude of the total wave disturbance, known as interference @the conditions of coherence >The same physical type of waves, and same direction of the oscillation The same frequency; )A phase difference that is independent of time The phase difference is the difference between the individual phases of the two waves
2 §24.1 Light waves and the coherent condition of waves 2. The interference phenomena of waves 3. Coherence and the conditions of coherence 1A superposition of waves may give rise to variations in the resulting amplitude of the total wave disturbance, known as interference. 2the conditions of coherence ¾The same physical type of waves, and same direction of the oscillation; ¾ The same frequency; ¾A phase difference that is independent of time. The phase difference is the difference between the individual phases of the two waves. §24.1 Light waves and the coherent condition of waves

8 24.1 Light waves and the coherent condition of waves 4. The phase difference Simple harmonic oscillation x(t=Acos(at+o) Time( A---the amplitude 2兀 a---the angular frequency a 小- the initial phase at+o---phase 824.1 Light waves and the coherent condition of waves Sinusoidal(harmonic) waves Y(x, t)=Acos(lr-@t+o) △x Wave at t=△t Wave at t=0 k 2r ---angular wave number
3 4. The phase difference Simple harmonic oscillation x(t) = Acos(ωt +φ ) A---the amplitude ω---the angular frequency φ---the initial phase ω t + φ ---phase T π ω 2 = §24.1 Light waves and the coherent condition of waves Sinusoidal(harmonic) waves Ψ (x,t) = Acos(kx −ωt +φ ) λ 2π k = ---angular wave number §24.1 Light waves and the coherent condition of waves

8 24.1 Light waves and the coherent condition of waves If two waves Y(r, t)=Acos(kr-@t+Ou) ¥2(x,D)=Acos(kx-ort+中2) The phase difference of the two waves 6=(k n2)-(kx-or+)=中2- If two waves Y(x, t)=Acos(hx, -at+o) Y2(x, t)=Acos(Kx-at+ The phase difference of the two waves 2丌 ath at+o)-(l-at+o) )==44x 824.1 Light waves and the coherent condition of waves 5. The f principle of superpose ition and interference of waves If the amplitudes are not too large, the total wave disturbance at any point x and time t is the sum of the individual wave disturbance (x,D)=1(x,D)+¥2(x,D)+3(x,D)+ Case 1 Y(x, t)=A, cos( lx -@t +u) p2(x, t) t+p2) y(x,D)=y1(x,t)+y2(x,) A, cos(kr-at+o1)+A, cos(kx-at +o2)
4 ( , ) cos( ) ( , ) cos( ) 2 2 1 1 Ψ ω φ Ψ ω φ = − + = − + x t A kx t x t A kx t If two waves The phase difference of the two waves 2 1 2 1 δ = (kx −ωt +φ ) − (kx −ωt +φ ) = φ −φ ( , ) cos( ) ( , ) cos( ) 2 2 1 1 Ψ ω φ Ψ ω φ = − + = − + x t A kx t x t A kx t If two waves The phase difference of the two waves kx t kx t ∆x λ π δ ω φ ω φ 2 ( ) ( ) path = 2 − + − 1 − + = §24.1 Light waves and the coherent condition of waves 5. The principle of superposition and interference of waves If the amplitudes are not too large, the total wave disturbance at any point x and time t is the sum of the individual wave disturbance. Ψ (x,t) =Ψ1 (x,t) +Ψ2 (x,t) +Ψ3 (x,t) +L cos( ) cos( ) ( , ) ( , ) ( , ) 1 1 1 2 1 2 = −ω +φ + −ω +φ = + A kx t A kx t Ψ x t Ψ x t Ψ x t ( , ) cos( ) 1 = 1 − ω + φ 1 Ψ x t A kx t ( , ) cos( ) 2 = 1 − ω + φ 2 Ψ x t A kx t ¾Case 1 §24.1 Light waves and the coherent condition of waves

8 24.1 Light waves and the coherent condition of waves Y(x, t =2A, cos kx-o+中)+(kx-ot+中 (hr-at+ou-ckr-at+e) cos 2 2A, coS( )cos(hr-at n+中2 2 2 Y(x, t)=2A, cos( n2- )cos(kx-at+ +吗2 2 4p=2n丌,A=2A1(n=0,2,…) constructive 4小p=(2n+1)z,A=0(n=0,1,2,…) destructive 824.1 Light waves and the coherent condition of waves YI(x, t) 平(x0)xn) Y(r t y(r,) 2(x,n) △φ=0 △p=丌 p=2x/3 Hxt)
5 ) 2 )cos( 2 2 cos( ] 2 ( ) ( ) cos[ ] 2 ( ) ( ) ( , ) 2 cos[ 2 1 1 2 1 1 2 1 2 1 φ φ ω φ φ ω φ ω φ ω φ ω φ + − + − = − + − − + ⋅ − + + − + = A kx t kx t kx t kx t kx t Ψ x t A ) 2 ) cos( 2 ( , ) 2 cos( 2 1 1 2 1 φ φ ω φ φ + − + − Ψ x t = A kx t (2 1) , 0 ( 0,1,2, ) 2 , 2 ( 0,1,2, ) 1 L L = + = = = = = n A n n A A n ∆φ π ∆φ π constructive destructive §24.1 Light waves and the coherent condition of waves ∆φ = 0 ∆φ = π ∆φ = 2π 3 ( , ) and ( , ) 2 1 Ψ x t Ψ x t ( , ) 1 Ψ x t ( , ) 2 Ψ x t ( , ) 1 Ψ x t ( , ) 2 Ψ x t Ψ(x,t) Ψ(x,t) Ψ(x,t) Ψ Ψ Ψ Ψ Ψ Ψ §24.1 Light waves and the coherent condition of waves

8 24.1 Light waves and the coherent condition of waves ifA1≠A2then p=2nz,A=A1+A2(n=0,1,2,…) 4=(2n+1)z,A=4-42|(n=0,12,…) 里(14c0-a+= >Case 2 Y,(r, t)=A cos(kr -at+o) y(r,t)=y1(r,t)+y2(r,) A, cos(kr -at+o)+A cos(hr -at+o) s24.1 Light waves and the coherent condition of waves (kr, -at+o)+(kr, -at+o) y(r, t)=2A cos[ 2 cos[ (kr-at+o)-(k 2-+ 2 A, coS( )cos(r2+r1)-at+小l P(r, t)=2A, cos (2-G)cosl(r+2)-at+pI 2 Path difference The total amplitude k depends on (F2-r1 △r 6
6 if A1 ≠ A2 then (2 1) , ( 0,1,2, ) 2 , ( 0,1,2, ) 1 2 1 2 L L = + = − = = = + = n A A A n n A A A n ∆φ π ∆φ π cos( ) cos( ) ( , ) ( , ) ( , ) 1 1 1 2 1 2 = −ω + φ + −ω + φ = + A kr t A kr t Ψ r t Ψ r t Ψ r t ¾Case 2 ( , ) cos( ) ( , ) cos( ) 2 1 2 1 1 1 ω φ ω φ Ψ = − + Ψ = − + r t A kr t r t A kr t o2 r2 r1 p o1 §24.1 Light waves and the coherent condition of waves ( ) ] 2 )cos[ 2 2 cos( ] 2 ( ) ( ) cos[ ] 2 ( ) ( ) ( , ) 2 cos[ 2 1 2 1 1 1 2 1 2 1 ω φ ω φ ω φ ω φ ω φ + − + − = − + − − + ⋅ − + + − + = r r t kr kr k A kr t kr t kr t kr t Ψ r t A ( ) ] 2 ( ) cos[ 2 ( , ) 2 cos = 1 2 − 1 r1 + r2 −ωt + φ k r r k Ψ r t A r r r k − = ∆ λ π ( ) 2 2 1 The total amplitude depends on §24.1 Light waves and the coherent condition of waves Path difference

824.1 Light waves and the coherent condition of waves Ar=n, A=2A(n=0, 1, 2, . constructive Ar=(2n+1), A=0(n=0, 1, 2,)destructive In another words The phase difference 8 pk(巧2一)÷2z Ar=nh, Spath =2nT(n=0, 1, 2, . in phase △r=(2n+1) 2 =(2n+1)(n=0,1,2, O t of of phase s24.1 Light waves and the coherent condition of waves Same frequency and same direction of motion A, cos( at +ou) x2=A2 cos(at+p2) xsr +x Acos(ot+φ) A=A,+A A=y4+A2+24142cos(-q) A1sing+A2sin吗 P=arct A, cos+ A, coso
7 , 0 ( 0,1,2, ) 2 (2 1) , 2 ( 0,1,2, ) 1 L L ∆ = + = = ∆ = = = r n A n r n A A n λ λ constructive destructive In another words: = k r − r = ∆r λ π δ 2 ( ) The phase difference path 2 1 , (2 1) ( 0,1,2, ) 2 (2 1) , 2 ( 0,1,2, ) path path L L ∆ = + = + = ∆ = = = r n n n r n n n δ π λ λ δ π out of phase in phase §24.1 Light waves and the coherent condition of waves 2 cos( ) 1 2 2 1 2 2 2 A = A1 + A + A A φ −φ 1 1 2 2 1 1 2 2 cos cos sin sin arctg φ φ φ φ φ A A A A + + = cos( ) 1 2 = ω + φ = + A t x x x A A1 A2 r r r = + A r A1 r A2 r ω ω ω x 1 x 2 x φ φ1 φ 2 x Same frequency and same direction of motion cos( ) 1 = 1 ω + φ 1 x A t cos( ) 2 = 2 ω + ϕ 2 x A t §24.1 Light waves and the coherent condition of waves

824.1 Light waves and the coherent condition of waves x=a, cos( at +pu) x2=A2 cos(at+2) Y(r, t)=A, cos(kr -at+o) Y,(r, t)=A, cos(kr, -at+o) A=VA+A2+2A, 42 coskk( -) 2丌 =12421+cos2(△r) V24(1+cos Sath]=4A cos2-path 2 卯=r1si(+)+$m+小 A cos(kr +o)+A, cos(kr= +p) s24.1 Light waves and the coherent condition of waves 6. Wave intensity The power of transmitted by the wave de dP dt Po242 n?[kx-ax)+Bdydz The intensity of a wave is the average power transmitted by the wave through one square meter oriented perpendicular to the direction the wave is propagating de dydz dydz Aav 8
8 cos( ) 1 = 1 ω + φ 1 x A t cos( ) 2 = 2 ω + ϕ 2 x A t 2 2 [1 cos ] 4 cos ( )] 2 2 [1 cos 2 cos[ ( )] 2 2 path path 1 2 1 2 1 1 2 2 1 2 2 2 1 1 2 δ δ λ π A A A r A A A A A k r r A A = + = = + ∆ = + + − = cos( ) cos( ) sin( ) sin( ) arctg 1 1 2 2 1 1 2 2 φ φ φ φ ϕ + + + + + + = A kr A kr A kr A kr ( , ) cos( ) ( , ) cos( ) 2 2 2 1 1 1 ω φ ω φ Ψ = − + Ψ = − + r t A kr t r t A kr t §24.1 Light waves and the coherent condition of waves 6. Wave intensity The power of transmitted by the wave v A [ ] kx t y z t E P sin ( ) d d d d d 2 2 2 = = ρ ω −ω + φ The intensity of a wave is the average power transmitted by the wave through one square meter oriented perpendicular to the direction the wave is propagating. A v vA kx t t y z y z y z T P I T 2 2 0 av 2 2 2 av 2 1 sin [( ) ]d d d 1 d d 1 d d d ρ ω ρ ω ω φ = = = − + ∫ §24.1 Light waves and the coherent condition of waves

824.1 Light waves and the coherent condition of waves I=NPAOVocA2 For light oscillation: E=E coS( @t +Pu) 122-2 PEI@ ac Er 6. The methods of obtaining the coherent waves ① wavefront division ② amplitude division 824.2 Youngs double slit experiment 1. Installation and the phenomena of experiment This is a typical method of wavefront division
9 2 2 2 2 1 I = A v ∝ A r r ρ ω 6. The methods of obtaining the coherent waves 1wavefront division 2amplitude division §24.1 Light waves and the coherent condition of waves For light oscillation: cos( ) = 1 ω + φ 1 E E t 2 1 2 2 1 2 1 I = E v ∝ E r r ρ ω §24.2 Young’s double slit experiment 1. Installation and the phenomena of experiment This is a typical method of wavefront division

824.2 Youngs double slit experiment 2. Theoretical analysis Two light oscillations at point P ciden E,r,t) wave =Eo cos(hr-at+o E,(r, t) =Eo cos(hr -at+o) Path length difference r -r=sine eparation of the slits If d>>d 824.2 Youngs double slit experiment Phase difference Ar=-dsinB Path length differenc 4 The condition for constructive interference (bright fringe or maximum) and destructive interference(dark fringe or minimum)on the distant screen is
10 2. Theoretical analysis cos( ) ( , ) cos( ) ( , ) 0 2 2 0 1 1 ω φ ω φ = − + = − + E kr t E r t E kr t E r t Path length difference ∆r = r1 −r2 = d sinθ Two light oscillations at point P §24.2 Young’s double slit experiment Separation of the slits If D>>d ∆r The condition for constructive interference (bright fringe or maximum) and destructive interference (dark fringe or minimum)on the distant screen is Phase difference θ λ π ∆ λ π δ sin 2 2 path = r = d §24.2 Young’s double slit experiment
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.13)超导电性.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.12)半导体.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.11)激光.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.8)量子力学简介.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.7)不确定关系.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.6)德布罗意波 实物粒子的二象性.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.5)夫兰克-赫芝实验.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.4)玻尔理论.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.3)康普顿效应.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.2)光电效应 光的波粒二相性.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(19.1)黑体辐射 普朗克能量子假设.ppt
- 南京邮电大学:《量子物理》课程教学资源(PPT课件)第十九章 量子物理(教学基本要求).ppt
- 《量子物理》课程教学资源(PPT课件讲稿)第1章 波粒二象性.ppt
- 《量子物理》课程教学资源(PPT课件讲稿)引言.ppt
- 青岛科技大学:《大学物理》课程教学资源(PPT课件)第五十八讲 近代物理习题点评.ppt
- 青岛科技大学:《大学物理》课程教学资源(PPT课件)第五十六讲 量子物理简介(二).ppt
- 青岛科技大学:《大学物理》课程教学资源(PPT课件)第五十六讲 量子物理简介(一).ppt
- 青岛科技大学:《大学物理》课程教学资源(PPT课件)第五十四讲 相对论简介(二).ppt
- 青岛科技大学:《大学物理》课程教学资源(PPT课件)第五十四讲 相对论简介(一).ppt
- 青岛科技大学:《大学物理》课程教学资源(PPT课件)第五十三讲 机械波波动光学习题点评.ppt
- 西南交通大学:《大学物理》课程教学资源(讲稿,双语)CHAPTER 25 The special Theory of relativity.pdf
- 《波动和光学》第四章 光的衍射.ppt
- 《波动和光学》第五章 光的偏振.ppt
- 《波动和光学》第三章 光的干涉.ppt
- 《波动和光学》第二章 波动(Wave).ppt
- 《波动和光学》例题一.doc
- 《波动和光学》例题二.doc
- 《波动和光学》例题三.doc
- 《波动和光学》例题四.doc
- 《波动和光学》例题五.doc
- 《波动和光学》例题六.doc
- 《波动和光学》例题七.doc
- 《波动和光学》例题八.doc
- 《波动和光学》例题九.doc
- 《波动和光学》例题十.doc
- 《波动和光学》例题十一.doc
- 《波动和光学》例题十二.doc
- 《波动和光学》例题十三.doc
- 《波动和光学》例题十四.doc
- 《波动和光学》例题十五.doc