北京化工大学:《化学反应工程》课程PPT教学课件(英文版)Chemical reaction engineering(2010)Chapter 06-10

Chapter 6 Design for Single Reaction In this chapter we deal with single reaction.These are reactions whose progress can be described and followed adequately by using one and only one rate expression coupled with the necessary stoichiometric and equilibrium expressions. For such reactions product distribution is fixed; hence,the important factor in comparing design is the reactor size
1 Chapter 6 Design for Single Reaction In this chapter we deal with single reaction. These are reactions whose progress can be described and followed adequately by using one and only one rate expression coupled with the necessary stoichiometric and equilibrium expressions. For such reactions product distribution is fixed; hence, the important factor in comparing design is the reactor size

6.1 Size Comparison of Single Reactors ·Batch reactor Batch reactor has the advantage of small instrumentation cost and flexibility of operation.It has the disadvantage of high labor and handling cost,often considerable shutdown time to empty,clean out,and refill,and poorer quality control of the product. 2
2 6.1 Size Comparison of Single Reactors • Batch reactor • Batch reactor has the advantage of small instrumentation cost and flexibility of operation. It has the disadvantage of high labor and handling cost, often considerable shutdown time to empty, clean out, and refill, and poorer quality control of the product

Regarding reactor size,for a given duty and a constant volume system,an element of fluid reacts for the same length of time in the batch and in the plug flow reactor.Thus, the same volume of these reactors is needed to do a given job. On a long-term production basis we must correct the size requirement estimate to account for the shutdown time between batches. 3
3 • Regarding reactor size, for a given duty and a constant volume system, an element of fluid reacts for the same length of time in the batch and in the plug flow reactor. Thus, the same volume of these reactors is needed to do a given job. • On a long-term production basis we must correct the size requirement estimate to account for the shutdown time between batches

Mixed versus plug flow reactor,first-and second-order reaction Make a comparison for large class of reactions approximated by the simple nth- order rate law: w-张-c where n varies anywhere from zero to three.For mixed flow Eq.5.11 gives Tm CAOY CAoXA=1 XA(1+EAXA) FA0m-TA kCAo(1-XA)” whereas for plug flow Eq.5.17 gives 4
4 • Mixed versus plug flow reactor, first- and second-order reaction • Make a comparison for large class of reactions approximated by the simple nthorder rate law:

Dividing we find that (TCAO)m .[x+l (1) (TCAO)p 。ix With constant density,or s =0,this expression integrates to XA (TCAO)m n卡1 (rCX)p 可 or (2) n=1 (TCAO )p -In(1-XA)p 5
5

100 。 Third order(n=3) Second order (n=2) =2 EA =1 0 1 223 10 First order and() (n=1) 1 0 2 n 0.5 n=0.25 1 0.01 0.1 1.0 6 1-XA
6

For n=2 (1-X4” m XA --x广- 、n-1 XA X 1-X4)-1-X1-X1-1-X》1-x 7
7 ( ) ( ) ( ) ( ) ( ) (( ) ) ( ) ( ) ( )( ( )) A A A A A A A A A A p n A m n A A p n A m n A X X X X X X X X X X n X X X C C n − = − − − = − − − = − − − = − − − − = = − − − − 1 1 1 1 1 1 1 1 1 1 1 1 1 1 For 2 2 1 1 2 1 0 1 0

Above figure shows 1.For any particular duty and for all positive reaction orders the mixed reactor is always larger than the plug flow reactor.The ratio of volumes increases with reaction order. 2.When conversion is small,the reactor performance is only slightly affected by flow type.The performance ratio increases very rapidly at high conver- sion;consequently,a proper representation of the flow becomes very impor- tant in this range of conversion. 3.Density variation during reaction affects design;however,it is normally of secondary importance compared to the difference in flow type. Remember that the essential factor for reactor size is reaction rate, which is controlled only by concentration of reactant A,besides temperature. The order of reaction,conversion,expansion factor are all related to concentration. 8
8 Above figure shows Remember that the essential factor for reactor size is reaction rate, which is controlled only by concentration of reactant A, besides temperature. The order of reaction, conversion, expansion factor are all related to concentration

Variation of reactant ratio for second-order reaction A+B->products,M=CBo/CAo (3.13) 一rA=-rB=KCACB behave as second-order reactions of one component when the reactant ratio is unity.Thus -rA=kCACB=kC when M=1 (3) On the other hand,when a large excess of reactant B is used then its concentration does not change appreciably(Ca=CBo)and the reaction approaches first-order behavior with respect to the limiting component A,or -rA kCACB =(kCBO)CA =k'CA when M>1 (4) Thus in Fig.6.1,and in terms of the limiting component A,the size ratio of mixed to plug flow reactors is represented by the region between the first-order and the second-order curves
9 • Variation of reactant ratio for second-order reaction

·General graphical comparison ·For a nth-order Any rate curve reaction(n>0),it can be seen that Area Tm/CAO mixed flow Area Tp/CAO always needs a larger volume than does plug XA flow for any Figure 6.2 Comparison of performance of mixed flow and plug flow reactors for any reac- given duty. tion kinetics. 10
10 • General graphical comparison • For a nth -order reaction(n>0), it can be seen that mixed flow always needs a larger volume than does plug flow for any given duty
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京化工大学:《化学反应工程》课程PPT教学课件(英文版)Chemical reaction engineering(2010)Chapter 17-18.ppt
- 北京化工大学:《化学反应工程》课程PPT教学课件(英文版)Chemical reaction engineering(2009)Chapter 01-05.ppt
- 北京化工大学:《化学反应工程》课程教学资源(PPT课件讲稿)化学反应工程(第二版,共九章,负责人:郭锴).ppt
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第12章 过渡元素.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第11章 主族元素.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第05章 酸碱平衡(Acid-Base Equilibria).pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第10章 配位化合物和配位平衡.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第09章 化学键和分子结构.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第08章 原子结构和元素周期率.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第07章 氧化还原反应.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第06章 难溶电解质的沉淀溶解平衡.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第04章 化学反应速率及化学平衡.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第03章 化学热力学基础.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第02章 物质的聚集状态和溶液.pptx
- 北京化工大学:《基础化学》课程教学资源(PPT课件)第01章 绪论 Fundamental Chemistry(负责人:李保山).pptx
- 北京化工大学:《基础化学》课程教学资源(试卷习题)2013-2014学年第一学期《基础化学》期中考试试卷及参考答案.pdf
- 北京化工大学:《基础化学》课程教学资源(试卷习题)2012-2013学年第一学期国际班《基础化学》期中考试试卷及参考答案.pdf
- 《基础化学》课程教学资源(文献资料)Quantum gas goes below absolute zero.doc
- 《基础化学》课程教学资源(文献资料)合成氨进展——科学家开发出氨合成节能技术.pdf
- 《基础化学》课程教学资源(文献资料)碘与指纹破案.pdf
- 北京化工大学:《化学反应工程》课程PPT教学课件(英文版)Chemical reaction engineering(2011)Chapter 11-15.ppt
- 北京化工大学:《有机分析》课程教学资源(实验指导,高职,文字版).pdf
- 河北医科大学:《天然药物化学》课程教学资源(大纲教材)天然药物化学中英文对照专业词汇(2009版).pdf
- 河北医科大学:《天然药物化学》课程教学资源(大纲教材)天然药物化学教学大纲(2014版).pdf
- 河北医科大学:《天然药物化学》课程教学资源(大纲教材)天然药物化学教学大纲(2015版).pdf
- 河北医科大学:《天然药物化学》课程教学资源(大纲教材)本科天然药物化学教学大纲(2017版).pdf
- 河北医科大学:《天然药物化学》课程教学资源(大纲教材)天然药物化学中英文对照专业词汇(2018版).pdf
- 河北医科大学:《天然药物化学》课程教学资源(复习题集)天然药物化学复习题(2014版,无答案).pdf
- 河北医科大学:《天然药物化学》课程教学资源(复习题集)本科学生专业选修课《有机分析》习题(无解答).pdf
- 河北医科大学:《天然药物化学》课程教学资源(复习题集)天然药物化学复习题(海洋天然产物,含答案).pdf
- 《天然药物化学》课程参考文献(海洋天然产物)D.S. Bhakuni&D.S. Rawat《Bioactive marine natural products》.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Deep-sea natural products.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Drugs from the Sea - Opportunities and Obstacles.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Marine-Sourced Anti-Cancer and Cancer Pain Control Agents in Clinical and Late Preclinical Development.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Highlights of marine natural products chemistry(1972–1999).pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Marine Organisms as Potential Supply for Drug Finding-A Review Study.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Marine Natural Products and Related Compounds in Clinical and Advanced Preclinical Trials.pdf
- 河北医科大学:《天然药物化学》课程参考文献(海洋天然产物)Marine Pharmaceuticals.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries - Tips for Success.pdf
- 《天然药物化学》课程参考文献(海洋天然产物)Biomedicinals from the phytosymbionts of marine invertebrates - A molecular approach.pdf