数据挖掘实现的住院病人的实时预警(PPT讲稿)Real-Time Clinical Warning for Hospitalized Patients via Data Mining

Real-Time Clinical Warning for Hospitalized Patients via Data Mining(数据挖掘实现的住院病人的实时预警) Department of Computer Science and Engineering Yixin Chen(陈一昕) Yi Mao, Minmin Chen, Rahay dor,Greg ackermann, Zhicheng Yang chengyang lu School of medicine Kelly Faulkner, Kevin Heard, Marin Kollef, Thomas Bailey s Washington University in St Louis
Department of Computer Science and Engineering Yixin Chen (陈一昕), Yi Mao, Minmin Chen, Rahav Dor, Greg Hackermann, Zhicheng Yang, Chengyang Lu School of Medicine Kelly Faulkner, Kevin Heard, Marin Kollef, Thomas Bailey Real-Time Clinical Warning for Hospitalized Patients via Data Mining (数据挖掘实现的住院病人的实时预警)

Background The icu direct costs per day for survivors is between six and seven times those for non -CU care Unlike patients at ICUs, general hospital wards(GHW) patients are not under extensive electronic monitoring and nurse care Clinical study has found that 4-17% of patients will undergo cardiopulmonary or respiratory arrest while in the GHW of hospital
Background • The ICU direct costs per day for survivors is between six and seven times those for non-ICU care. • Unlike patients at ICUs, general hospital wards (GHW) patients are not under extensive electronic monitoring and nurse care. • Clinical study has found that 4–17% of patients will undergo cardiopulmonary or respiratory arrest while in the GHW of hospital

Project mission Sudden deteriorations(e.g. septic shock, cardiopulmonary or respiratory arrest)of ghw patients can often be severe and life threatening Goal: Provide early detection and intervention based on data mining to prevent these serious, often life threatening events Using both clinical data and wireless body sensor data A NIH-ICTS funded project: currently under clinical trials at Barnes-Jewish Hospital, St Louis, MO
Project mission • Sudden deteriorations (e.g. septic shock, cardiopulmonary or respiratory arrest) of GHW patients can often be severe and life threatening. • Goal: Provide early detection and intervention based on data mining – to prevent these serious, often lifethreatening events. – Using both clinical data and wireless body sensor data • A NIH-ICTS funded project: currently under clinical trials at Barnes-Jewish Hospital, St. Louis, MO

What exactly do we predict Is he going to die?
What exactly do we predict Is he going to die?

What exactly do we predict Is he going to CU?
What exactly do we predict Is he going to ICU?

System Architecture Learning Tier 1 Clinical Database Trigg WSN Learning Tier 2 - Feedback Warning .Tier 1: EWs (early warning system) Clinical data, lab tests, manually collected, low frequency Tier 2: RDs (real-time data sensing) Body sensor data, automatically collected, wirelessly transmitted, high frequency
System Architecture •Tier 1: EWS (early warning system) • Clinical data, lab tests, manually collected, low frequency •Tier 2: RDS (real-time data sensing) • Body sensor data, automatically collected, wirelessly transmitted, high frequency

Agenda Background and overview Early warning system(EWS) Real-time data sensing(RDS) Future work
Agenda 1 Background and overview 3 Real-time data sensing (RDS) 5 Future work Early warning system (EWS) 2

Medical Record(34 vital signs: pulse, temperature, oXygen saturation, shock index, respirations, age, blood pressure..) -H- Respiration -HI-Temperature 160-吾-Bp.syso Oxygen Satuarion 阜 口--口 都普一---
Medical Record (34 vital signs: pulse, temperature, oxygen saturation, shock index, respirations, age, blood pressure …) Time/second Time/second

Related work Medical data mIning medica machine knowledge learning methods Acute Physiology Score, Chronic Health Score, and Modified Early decision neural SCAP and PSI APACHE score are Warning SVM used to predict Score(MEWS) trees networks renal failures Main problems: Most previous general work uses a snapshot method that takes all the features at a given time as input to a model, discarding the temporal evolving of data
Related Work Main problems : Most previous general work uses a snapshot method that takes all the features at a given time as input to a model, discarding the temporal evolving of data Medical data mining medical knowledge machine learning methods SCAP and PSI Acute Physiology Score, Chronic Health Score , and APACHE score are used to predict renal failures Modified Early Warning Score (MEWS) decision trees neural networks SVM

Overview of ews Goal: Design an data mining algorithm that can automatically identify patients at risk of clinical deterioration based on their existing electronic medical records time-series Challenges Classification of high in different scale dimensional time series data Irregular data gaps 25000 o measurement errors 20000 class imbalance 口Non-cU 15000 口IcU
Overview of EWS Goal: Design an data mining algorithm that can automatically identify patients at risk of clinical deterioration based on their existing electronic medical records time-series. 0 5000 10000 15000 20000 25000 30000 Non-ICU ICU Challenges: • Classification of highdimensional time series data • Irregular data gaps • measurement errors • class imbalance
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《PHP程序设计》教学资源(PPT课件讲稿)项目四 面向对象网站开发.ppt
- 《软件工程》课程教学资源(PPT课件讲稿)第3章 软件需求分析.ppt
- 四川大学:《操作系统 Operating System》课程教学资源(PPT课件讲稿)Chapter 3 Process Description and Control.ppt
- 随机图与复杂网络(PPT讲稿)随机演化博弈的算法研究及其在复杂网络中的应用.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第四章 存储器.ppt
- 中国人民大学:《数据库系统概论 An Introduction to Database System》课程教学资源(PPT课件讲稿)第一章 绪论.ppt
- 《编译原理》课程教学资源(PPT课件讲稿)语法分析 Syntax analysis(自底向上分析 Bottom-Up Parsing).ppt
- 《计算机网络安全》课程教学资源(PPT课件讲稿)第二章 密码学技术.ppt
- 《软件工程》课程教学资源(PPT课件讲稿)第7章 软件测试.ppt
- 上海交通厌:《通信网络》课程教学资源(PPT讲稿)DELAY MODELS IN DATA NETWORKS、LITTLE’S LAW、ARRIVAL MODEL、M/M/X QUEUING MODELS.pptx
- 《高级语言程序设计》课程教学资源(试卷习题)试题四(无答案).doc
- 《计算机网络和因特网》教学资源(PPT讲稿)网络互连(概念, IP 地址, IP 路由, IP 数据报, 地址解析).ppt
- 西安交通大学:《网络与信息安全》课程PPT教学课件(网络入侵与防范)身份认证.ppt
- 《计算机基础及C语言程序设计》课程PPT教学课件(讲稿)第1章 概论.ppt
- 《SQL基础教程》课程教学资源(PPT课件讲稿)第6章 数据操作与SQL语句.ppt
- 河南中医药大学:《网络技术实训》课程教学资源(PPT课件讲稿)第一阶段 组网(主讲:路景鑫).pptx
- 南京大学:《编译原理》课程教学资源(PPT课件讲稿)第五章 语法制导的翻译.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第7章 多处理器及线程级并行.ppt
- 上海交通大学:《程序设计》课程教学资源(PPT课件讲稿)第14章 输入输出与文件.ppt
- 中国科学技术大学:《计算机体系结构》课程教学资源(PPT课件讲稿)第5章 指令级并行.pptx
- 《机器学习》课程教学资源(PPT课件讲稿)第六章 特征降维和选择.ppt
- 《C语言程序设计》课程教学资源(PPT课件讲稿)第4章 选择结构程序设计.ppt
- 苏州大学:《中文信息处理》课程教学资源(PPT课件讲稿)第二章 汉字代码体系.ppt
- 南京大学:模型检验(PPT课件讲稿)model checking.pptx
- 《单片机原理与其应用》课程教学资源(PPT课件讲稿)第8章 单片机的存储器的扩展.pptx
- 并发程序精化验证及其应用(PPT讲稿)Refinement Verification of Concurrent Programs and Its Applications.pptx
- 《计算机网络安全》课程电子教案(PPT教学课件)第一章 计算机网络安全概述.ppt
- 《Computer Networking:A Top Down Approach》英文教材教学资源(PPT课件讲稿,3rd edition)Chapter 5 Link Layer and LANs.pps
- 上海交通大学:操作系统安全(PPT课件讲稿)操作系统安全 OS Security(邹恒明).pps
- 某高校计算机专业课程教学大纲合集(汇编).pdf
- 电子科技大学:《网络安全与网络工程》课程教学资源(PPT课件讲稿)第六章 杂凑函数(主讲:聂旭云).ppt
- 中国科学技术大学:《嵌入式操作系统 Embedded Operating Systems》课程教学资源(PPT课件讲稿)第六讲 死锁及其处理.ppt
- 西华大学:《电子商务概论》课程教学资源(PPT课件讲稿)第7章 电子商务物流.ppt
- 《软件工程》课程教学资源(PPT课件讲稿)第12章 软件开发工具StarUML及其应用.ppt
- 《计算机网络》课程PPT教学课件(Windows)第09讲 DNS服务.ppt
- 中国科学技术大学:《数据结构》课程教学资源(PPT课件讲稿)第三章 线性表.pps
- 西安理工大学:面向主题的服务(PPT讲稿)综合集成支撑平台业务化——互联网信息化(平台、内容、服务).ppt
- 《数据科学》课程教学资源(PPT课件讲稿)第2章 数据预处理.ppt
- 《计算机组成原理》课程教学资源(PPT课件讲稿)第2章 运算方法和运算器.ppt
- 《数据库系统原理》课程PPT教学课件(SQLServer)第12章 并发控制.ppt